The H2S water screening test and the membrane filtration faecal coliform count were compared with Escherichia coli counts for water samples collected from household water sources and domestic drinking water in rural Malaysia. Water samples were taken from 151 wells, 44 taps supplying water from the treated municipal supply and 192 domestic stored water supplies. E. coli were detected in 20% of the samples (42% of wells, 7% of tap water and 6% of drinking water). Excellent correlation (Spearman's rank correlation rs = 0.93) was found between the faecal coliform and E. coli counts for all sample types. The H2S method was poorly correlated whether read at 18 or 30 h. False positive rates were highest for well water, and false negative rates were highest for both well and drinking water samples, with low E. coli counts. The faecal coliform test was an excellent predictor of the presence of E. coli in these water samples, while the H2S test was very inadequate.
Water quality in Singapore's coastal area was evaluated with microbial indicators, pathogenic vibrios, chemical tracers and physico-chemical parameters. Sampling sites were grouped into two clusters (coastal sites at (i) northern and (ii) southern part of Singapore). The coastal sites located at northern part of Singapore along the Johor Straits exhibited greater pollution. Principal component analysis revealed that sampling sites at Johor Straits have greater loading on carbamazepine, while turbidity poses greater influence on sampling sites at Singapore Straits. Detection of pathogenic vibrios was also more prominent at Johor Straits than the Singapore Straits. This study examined the spatial variations in Singapore's coastal water quality and provided the baseline information for health risk assessment and future pollution management.
Burkholderia pseudomallei causes melioidosis, a life-threatening infection in both humans and animals. Water is an important reservoir of the bacteria and may serve as a source of environmental contamination leading to infection. B. pseudomallei has an unusual ability to survive in water for a long period. This paper investigates physicochemical properties of water associated with the presence of B. pseudomallei in water supply in small ruminant farms in Peninsular Malaysia. Physicochemical properties of water samples taken from small ruminant farms that included temperature, pH, dissolved oxygen (DO2), optical density (OD), and chemical oxygen demand (COD) were measured after which the samples were cultured for B. pseudomallei. Multivariable logistic regression model revealed that slightly acidic water pH and higher COD level were significantly associated with the likelihood of the B. pseudomallei presence in the water.
This study evaluates and discusses the impact of the rural health improvement scheme in reducing the incidence of dysentery, enteric fever, cholera and viral hepatitis in Sarawak, Malaysia, using data compiled from state and federal health department reports. This study suggests that from 1963 to 2002, water supply intervention contributed to a more than 200-fold decrease in dysentery and a 60-fold decrease in enteric fever. Variations in reporting of viral hepatitis during that period make it difficult to detect a trend. Cholera was still endemic in 2002. Cholera and dysentery outbreaks, occurring when rural populations relied on contaminated rivers for their water supply, suggested that sanitation intervention was not as effective in reducing waterborne diseases. Recommendations are made for successive one-component interventions focusing on catchment management to ensure protection of current and alternative water supplies.