Displaying 1 publication

Abstract:
Sort:
  1. Dong L, Zhang Y, Li Y, Liu Y, Chen Q, Liu L, et al.
    Food Funct, 2023 Nov 13;14(22):10221-10231.
    PMID: 37916290 DOI: 10.1039/d3fo02474a
    Heat sterilization of dairy products can promote the formation of advanced glycation end products (AGEs), protein oxidation products (POPs) and α-dicarbonyl compounds, which have a significant influence on health due to the close association of these products with diabetes complications. In this study, eight oat phenolic acids were first analyzed for their inhibitory effect against AGEs formation. Due to their strong inhibitory effects and structural differences, caffeic acid (CA) and gallic acid (GA) were further selected to assess their anti-glycosylation mechanisms using spectroscopy, chromatography and molecular docking. CA/GA reduced the production of total AGEs and POPs in various bovine milk simulation models and protected whey proteins from structural modifications, oxidation, and cross-linking. Comparative analyses showed a structure-effect relationship between CA/GA and AGEs inhibition. Oat phenolic acids against AGEs and POPs might be related to the unique bonding of key amino acid residues in whey proteins, the inhibitory role of early fructosamine and the trapping of reactive α-dicarbonyl groups to form adducts. In conclusion, oat phenolic acids might present a promising dietary strategy to alleviate AGEs production and glycation of proteins in dairy products upon storage.
    Matched MeSH terms: Whey Proteins/analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links