Corticotrophin releasing factor (CRF) and beta-endorphin (beta EP) containing neurons are shown to be present in the hypothalamus and both neurons are found at the paraventricular nucleus (PVN). Steroid hormones have been found to alter the plasma level of these neurotransmitters. Glycyrrhizic acid (GCA) is the active component of liquorice. GCA inhibits the enzyme 11 beta-hydroxysteroid dehydrogenase (11HSD) which is needed for the inactivation of the steroid pathway, so therefore would cause changes to these neurons. The aim of this study was to investigate the effects of GCA as well as deoxycorticosterone (DOC) and dexamethasone (DM) on the modulation of CRF and beta EP containing neuron at the PVN of the hypothalamus. Rats were given either DM, DOC or GCA and adrenalectomized (ADX) and given either DM or DOC. At the end of treatment rats were transfused transcardially before sacrifice and the brain were dissected for immunohistochemical analysis. We found that immunostaining of the CRF containing neurons demonstrate a reduction in the number of positive neurons in DM treated rats. DOC and GCA treated rats showed the same result as in DM rats but the reduction is less. ADX, DM, DOC and GCA treated rats did not show any changes in the number of beta EP containing neurons but naloxone increased the number of beta EP containing neurons markedly. In conclusion, GCA and DOC have similar effects on CRF and beta EP containing neurons at the PVN.
Immunoreactive adrenocorticotropin (ACTH), beta-endorphin (BEP) and corticotropin-releasing factor (CRF) were detected in human term placenta obtained from elective Caesarian surgery. The concentrations of ACTH, BEP and CRF in placenta detected by radioimmunoassay (RIA) were 2.83 +/- 0.36, 0.52 +/- 0.05 and 0.56 +/- 0.15 ng/g wet weight of tissue respectively. Pro-opiomelanocortin (POMC) peptides were also detected in the amnion and chorion membranes and in the decidua. The concentrations of ACTH were 1.72 +/- 0.20, 4.43 +/- 0.39 and 5.80 +/- 0.17 ng/g and the levels of BEP were 0.42 +/- 0.18, 0.65 +/- 0.20 and 3.66 +/- 1.10 ng/g in the amnion, chorion and decidua respectively. In contrast to placenta, immunoreactive CRF was not detected in the amnion, chorion and decidua. Immunoreactive N-acetylated BEP was also not detected in all the placental subfractions. Comparison of the amounts of both ACTH and BEP in the various placental components indicated the following distribution: decidua > chorion > placenta > amnion. In decidua, POMC peptides were present in an equi-molar ratio but in the other three placental fractions, ACTH levels were three to five-fold higher than BEP. In immunohistochemical studies, only a positive staining for ACTH was obtained for decidua. Our results confirm the presence of POMC peptides and CRF in placenta and their physiological roles in pregnancy and parturition.