Affiliations 

  • 1 Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
PeerJ Comput Sci, 2021;7:e808.
PMID: 34977355 DOI: 10.7717/peerj-cs.808

Abstract

The conventional component repair in remanufacturing involves human decision making that is influenced by several factors such as conditions of incoming cores, modes of failure, severity of damage, features and geometric complexities of cores and types of reparation required. Repair can be enhanced through automation using additive manufacturing (AM) technology. Advancements in AM have led to the development of directed energy deposition and laser cladding technology for repair of damaged parts and components. The objective of this systematic literature review is to ascertain how intelligent systems can be integrated into AM-based repair, through artificial intelligence (AI) approaches capable of supporting the nature and process of decision making during repair. The integration of intelligent systems in AM repair is expected to enhance resource utilization and repair efficiency during remanufacturing. Based on a systematic literature review of articles published during 2005-2021, the study analyses the activities of conventional repair in remanufacturing, trends in the applications of AM for repair using the current state-of-the-art technology and how AI has been deployed to facilitate repair. The study concludes with suggestions on research areas and opportunities that will further enhance the automation of component repair during remanufacturing using intelligent AM systems.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.