The present study intended to develop efficient hydrogel spheres in treating simulated wastewater contaminated with p-chlorophenol. Herein, copper-modified nanocellulose was grafted onto alginate to produce eco-friendly hydrogel spheres to utilize as a viable biosorbent. Fabricated spheres were characterized through scanning electron microscopy, thermogravimetry, surface area measurement, point of zero charge and zeta potential analyses. The adsorption of p-chlorophenol was optimized by altering various experimental conditions. Pseudo second order kinetics and Langmuir adsorption isotherm best described the adsorption of p-chlorophenol onto copper-modified cellulose nanocrystal-based spheres. The maximum adsorption capacity was 66.67 mg g-1 with a reusability up to five regeneration cycles. The thermodynamic study directed that p-chlorophenol adsorption was exothermic, spontaneous, and reversible within the analyzed temperature range. Weber-Morris model revealed that intraparticle diffusion was not the singular rate-controlling step in the adsorption process. Hence, copper-modified nanocellulose spheres could be employed as a sustainable and effective biosorbent for p-chlorophenol adsorption from wastewater.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.