Affiliations 

  • 1 Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal 741249 India
  • 2 Department of Computer Science & Engineering, Jalpaiguri Governmemt Engineering College, Jalpaiguri, West Bengal 735102 India
  • 3 Department of Mathematics, Behala College, Calcutta University, Kolkata, West Bengal 700060 India
  • 4 Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
Multimed Tools Appl, 2023 May 10.
PMID: 37362739 DOI: 10.1007/s11042-023-15270-8

Abstract

After several waves of COVID-19 led to a massive loss of human life worldwide due to the changes in its variants and the vast explosion. Several researchers proposed neural network-based drug discovery techniques to fight against the pandemic; utilizing neural networks has limitations (Exponential time complexity, Non-Convergence, Mode Collapse, and Diminished Gradient). To overcome those difficulties, this paper proposed a hybrid architecture that will help to repurpose the most appropriate medicines for the treatment of COVID-19. A brief investigation of the sequences has been made to discover the gene density and noncoding proportion through the next gene sequencing. The paper tracks the exceptional locales in the virus DNA sequence as a Drug Target Region (DTR). Then the variable DNA neighborhood search is applied to this DTR to obtain the DNA interaction network to show how the genes are correlated. A drug database has been obtained based on the ontological property of the genomes with advanced D3Similarity so that all the chemical components of the drug database have been identified. Other methods obtained hydroxychloroquine as an effective drug which was rejected by WHO. However, The experimental results show that Remdesivir and Dexamethasone are the most effective drugs, with 97.41 and 97.93%, respectively.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.