Affiliations 

  • 1 School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
Multimed Tools Appl, 2023 Mar 07.
PMID: 37362736 DOI: 10.1007/s11042-023-14842-y

Abstract

This paper presents an online system for recording attendance based on facial recognition incorporating facial mask detection. The main objective of this project is to develop an effective attendance system based on face recognition and face mask detection, and to provide this service online through a browser interface. This would allow any user to use this system without the need to install special software. They simply need to open the interface of this system in a browser through any terminal. Recording attendance information online allows data to be easily recorded in a centralized online database. Since faces are used as biometric signatures in this project, all users registered in the system will have their profiles loaded with their face-images samples. Initially, before face recognition can be done, the model training phase based on SVM will be carried out, mainly to develop a trained model that can perform face recognition. A set of synthetic data will also be used to train the same model so that it can perform identification for users wearing face masks. The server application is coded in Python and uses the Open-Source Computer Vision (OpenCV) library for image processing. For web interfaces and the database, PHP and MySQL are used. With the integration of Python and PHP scripting programs, the developed system will be able to perform processing on online servers, while being accessible to users through a browser from any terminal. According to the results and analysis, an accuracy of about 81.8% can be achieved based on a pre-trained model for face recognition and 80% for face mask detection.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.