Affiliations 

  • 1 Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
Polymers (Basel), 2023 Jun 06;15(12).
PMID: 37376236 DOI: 10.3390/polym15122590

Abstract

Nafion is a commercial membrane that is widely used in direct methanol fuel cells (DMFC) but has critical constraints such as being expensive and having high methanol crossover. Efforts to find alternative membranes are actively being carried out, including in this study, which looks at producing a Sodium Alginate/Poly (Vinyl Alcohol) (SA/PVA) blended membrane with modification by montmorillonite (MMT) as an inorganic filler. The content of MMT in SA/PVA-based membranes varied in the range of 2.0-20 wt% according to the solvent casting method implemented. The presence of MMT was seen to be most optimal at a content of 10 wt%, achieving the highest proton conductivity and the lowest methanol uptake of 9.38 mScm-1 and 89.28% at ambient temperature, respectively. The good thermal stability, optimum water absorption, and low methanol uptake of the SA/PVA-MMT membrane were achieved with the presence of MMT due to the strong electrostatic attraction between H+, H3O+, and -OH ions of the sodium alginate and PVA polymer matrices. The homogeneous dispersion of MMT at 10 wt% and the hydrophilic properties possessed by MMT contribute to an efficient proton transport channel in SA/PVA-MMT membranes. The increase in MMT content makes the membrane more hydrophilic. This shows that the loading of 10 wt% MMT is very helpful from the point of view of sufficient water intake to activate proton transfer. Thus, the membrane produced in this study has great potential as an alternative membrane with a much cheaper cost and competent future performance.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.