Affiliations 

  • 1 Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • 2 Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. Electronic address: intanamin@upm.edu.my
  • 3 Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • 4 Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Int J Biol Macromol, 2023 Aug 09;251:126212.
PMID: 37567533 DOI: 10.1016/j.ijbiomac.2023.126212

Abstract

The present study developed the formulation of active bionanocomposites films endowed with the abilities of high biodegradability and antimicrobials for active packaging applications. The aim of this work was to prepare poly (lactic acid)/poly (butylene succinate) (PLA/PBS) blended films reinforced with different concentrations of nanofibrillated cellulose (NFC) and 9 % of thymol essential oil (EO) using the casting method. The active films were further evaluated through Fourier transform infrared spectroscopy (FTIR); as well as mechanical, physical, water vapour permeability (WVP), thermal analysis (TGA), biodegradation, morphological, and antimicrobial (% reduction of bacteria) testing. The tensile strength (TS) of PLA/PBS blend films increased by 12 % with the incorporation of 2 wt% of NFC. The PLA/PBS/NFC with 9 % thymol EO has a good water barrier performance with its tensile strength, elongation at break, and tensile modulus was 13.2 MPa, 13.1 %, and 513 MPa respectively. The presence of NFC promoted the disintegration of PLA/PBS films by 70.5 %. These films promoted the antibacterial activity against S. aureus and E. coli. The study demonstrates that the developed films improved the qualities of chicken fillets and have great potential to be used as active bionanocomposites in food packaging applications.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.