Affiliations 

  • 1 Division of Tropical Health and Medicine, James Cook University, Queensland, Australia. Electronic address: maxine.whittaker@jcu.edu.au
  • 2 Division of Tropical Health and Medicine, James Cook University, Queensland, Australia. Electronic address: cho3699@gmail.com
  • 3 School of Medicine, International Medical University, Kuala Lumpur, Malaysia
  • 4 Institute of Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
Acta Trop, 2023 Oct 20.
PMID: 37866729 DOI: 10.1016/j.actatropica.2023.107049

Abstract

Lymphatic filariasis is a public health problem and targeted for global elimination. WHO recommends mass drug administration to interrupt transmission of the parasites involved. There are concerns that transmission interruption may be difficult in areas of zoonotic filarial infections. This study aimed to estimate the pooled prevalence of zoonotic brugian filariasis, and to compare the pooled prevalence of brugian filariasis in human and animal populations in the same area based on available studies. A comprehensive literature search was conducted in health-related electronic databases (PubMed, Ovid MEDLINE, Index Medicus, google scholar). A random-effect meta-analysis of the pooled overall prevalence of filariasis in animal populations was conducted. Sixteen studies from four different Asian countries were identified. Studies were conducted most frequently in Thailand (n = 7), followed by Malaysia (n = 5), India (n = 3), and Sri Lanka (n = 1). Regardless of animal group, the pooled overall prevalence of animal Brugia infections was 13% (95%CI: 7-21%, I2:98%, 16 studies). On stratification, the pooled overall prevalence in the animal population was 19% (95%CI: 1-50%, I2: 99%, 3 studies) in India, 8% (95%CI: 2-7%, I2: 97%, 5 studies) in Malaysia, and 13% (95%CI: 7-20%, I2: 94%, 7 studies) in Thailand. The prevalence in the animal population was 17% (95%CI: 13-21%, 1 study) in Sri Lanka. The pooled overall prevalence of Brugia malayi was 13% (95%CI: 7-21%, I2:98%, 12 studies), while for Brugia pahangi this was 12% (95%CI: 7-19%, I2:86%, 7 studies). Regardless of animal group, geographic area, or diagnostic test, the prevalence of B. malayi was consistently high. On stratification by animal category, the pooled overall prevalence was 10% (95%CI: 6-14%, I2:92%, 13 studies) in cats, 12% (95%CI: 2-28%, I2: 99%, 6 studies) in dogs, and 55% (95%CI: 47-63%, 1 study) in leaf-eating monkeys. The findings show the extent of zoonotic Brugiainfections in domestic cats and dogs, suggesting that these animals are potential reservoirs for human brugian filariasis in the study countries. To substantiate this with more accuracy, future well designed whole genomic sequencing of individual mf collected from humans and B. malayi infected animals in the same area are needed.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.