Affiliations 

  • 1 Department of Software Engineering, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia
PeerJ Comput Sci, 2024;10:e1901.
PMID: 38435554 DOI: 10.7717/peerj-cs.1901

Abstract

Speech enhancement algorithms are applied in multiple levels of enhancement to improve the quality of speech signals under noisy environments known as multi-channel speech enhancement (MCSE) systems. Numerous existing algorithms are used to filter noise in speech enhancement systems, which are typically employed as a pre-processor to reduce noise and improve speech quality. They may, however, be limited in performing well under low signal-to-noise ratio (SNR) situations. The speech devices are exposed to all kinds of environmental noises which may go up to a high-level frequency of noises. The objective of this research is to conduct a noise reduction experiment for a multi-channel speech enhancement (MCSE) system in stationary and non-stationary environmental noisy situations with varying speech signal SNR levels. The experiments examined the performance of the existing and the proposed MCSE systems for environmental noises in filtering low to high SNRs environmental noises (-10 dB to 20 dB). The experiments were conducted using the AURORA and LibriSpeech datasets, which consist of different types of environmental noises. The existing MCSE (BAV-MCSE) makes use of beamforming, adaptive noise reduction and voice activity detection algorithms (BAV) to filter the noises from speech signals. The proposed MCSE (DWT-CNN-MCSE) system was developed based on discrete wavelet transform (DWT) preprocessing and convolution neural network (CNN) for denoising the input noisy speech signals to improve the performance accuracy. The performance of the existing BAV-MCSE and the proposed DWT-CNN-MCSE were measured using spectrogram analysis and word recognition rate (WRR). It was identified that the existing BAV-MCSE reported the highest WRR at 93.77% for a high SNR (at 20 dB) and 5.64% on average for a low SNR (at -10 dB) for different noises. The proposed DWT-CNN-MCSE system has proven to perform well at a low SNR with WRR of 70.55% and the highest improvement (64.91% WRR) at -10 dB SNR.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.