Affiliations 

  • 1 HICoE Centre of Biofuels and Biochemicals Research, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
  • 2 HICoE Centre of Biofuels and Biochemicals Research, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia. anita_ramli@utp.edu.my
  • 3 Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management for Oil and Gas, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
Bioresour Bioprocess, 2023 Nov 07;10(1):76.
PMID: 38647992 DOI: 10.1186/s40643-023-00698-5

Abstract

Since petroleum became depleted, rapid attention has been devoted to renewable energy sources such as lignocellulosic biomass to produce useful chemicals for industry (for instance vanillin). Three primary components of lignocellulose are lignin, cellulose, and hemicellulose. This paper uses microwave-assisted technology to oxidize the kenaf stalk (lignocellulosic biomass) and extract lignin to produce vanillin. Catalysts with variable acid-base and redox properties are essential for the mentioned effective conversion, for this reason, CeO2-CA, ZrO2-CA, and CeZrO2-CA catalysts were synthesized. The citrate complexation method was used for the catalyst synthesis and the physicochemical characteristics were analyzed by XRD, FTIR, FE-SEM, TEM, BET, and TPO. The characterization results demonstrated that CeZrO2-CA shows the smallest sized crystallites with a large specific surface area among the other chosen catalysts. For vanillin production, the effect of reaction temperature, reaction time, and catalyst loading was studied. It was observed that compared to other catalysts, CeZrO2-CA produced the highest vanillin yield of 9.90% for kenaf stalk for 5 wt% of CeZrO2-CA at 160 °C for 30 min. Furthermore, vanillin production using extracted lignin is studied keeping CeZrO2-CA as a catalyst and with the same operating parameters, which yielded 14.3% of vanillin. Afterward, the change in yield with respect to pH is also presented. Finally, the recyclability of catalyst is also studied, which showed that it has a strong metal support and greater stability which may give industrial applications a significant boost.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.