Affiliations 

  • 1 Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
  • 2 Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Food Science Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor Branch, 42300 Bandar Puncak Alam, Selangor, Malaysia
  • 3 Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran; Department of Food Engineering, Inonu University, 44280 Malatya, Turkey. Electronic address: abedini@damghaniau.ac.ir
Int J Biol Macromol, 2024 May 10;270(Pt 1):132288.
PMID: 38735604 DOI: 10.1016/j.ijbiomac.2024.132288

Abstract

This study investigated the functional properties of freeze-dried encapsulated Oliveria decumbens Vent. (OEO) and basil (BEO) essential oils (EOs) in maltodextrin/gum arabic coating solution (1:1). Nanoencapsulated EOs were evaluated in terms of size, polydispersity, encapsulation efficiency, morphology, antioxidant, and antibacterial activities (AOA and ABA), and sensory characteristics in vitro compared to the control. The TPC (30.43 to 32.41 mg GAE/g DW) and AOA (25.97 to 26.42 %) were determined in free and encapsulated OEO, and ABA was observed, which were higher than BEO. Both free and encapsulated OEO and BEO demonstrated significant ABA against various Gram-positive and Gram-negative bacteria, with MIC values ranging from 0.25 to 1.25 mg/mL and MBC values ranging from 1.00 to 3.00 mg/mL. In minced meat, both free and encapsulated oils effectively reduced bacterial counts during refrigerated storage, with log reductions ranging from 1.00 to 6.48 CFU/g. Additionally, the pH and thiobarbituric acid values in meat samples were better maintained with the addition of oils. Sensory analysis showed that the encapsulated oils effectively masked their natural flavor and aroma, making them suitable for incorporation into food. Finally, OEO and BEO nanocapsules can improve the standard and safety of meat products due to their antioxidant and antibacterial properties.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications