Affiliations 

  • 1 Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
Polymers (Basel), 2022 Feb 17;14(4).
PMID: 35215695 DOI: 10.3390/polym14040783

Abstract

Over the last few years, various industries have released wastewater containing high concentrations of dyes straight into the ecological system, which has become a major environmental problem (i.e., soil, groundwater, surface water pollution, etc.). The rapid growth of textile industries has created an alarming situation in which further deterioration to the environment has been caused due to substances being left in treated wastewater, including dyes. The application of activated carbon has recently been demonstrated to be a highly efficient technology in terms of removing methylene blue (MB) from wastewater. Agricultural waste, as well as animal-based and wood products, are excellent sources of bio-waste for MB remediation since they are extremely efficient, have high sorption capacities, and are renewable sources. Despite the fact that commercial activated carbon is a favored adsorbent for dye elimination, its extensive application is restricted because of its comparatively high cost, which has prompted researchers to investigate alternative sources of adsorbents that are non-conventional and more economical. The goal of this review article was to critically evaluate the accessible information on the characteristics of bio-waste-derived adsorbents for MB's removal, as well as related parameters influencing the performance of this process. The review also highlighted the processing methods developed in previous studies. Regeneration processes, economic challenges, and the valorization of post-sorption materials were also discussed. This review is beneficial in terms of understanding recent advances in the status of biowaste-derived adsorbents, highlighting the accelerating need for the development of low-cost adsorbents and functioning as a precursor for large-scale system optimization.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.