Water contamination poses a significant challenge to environmental and public health, necessitating sustainable wastewater treatment solutions. Adsorption is one of the most widely used techniques for purifying water, as it effectively removes contaminants by transferring them from the liquid phase to a solid surface. Bio-based hydrogel adsorbents are gaining popularity in wastewater treatment due to their versatility in fabrication and modification methods, which include blending, grafting, and crosslinking. Owning to their unique structure and large surface area, modified hydrogels containing reactive groups like amino, hydroxyl, and carboxyl, or functionalized hydrogels with inorganic nanoparticles particularly graphene nanomaterials, have demonstrated promising adsorption capabilities for both inorganic and organic contaminants. Bio-based hydrogels have excellent physicochemical properties and are non-toxic, environmentally friendly, and biodegradable, making them extremely effective at removing contaminants like heavy metal ions, dyes, pharmaceutical pollutants, and organic micropollutants. The versatility of hydrogels allows for various forms to be used, such as films, beads, and nanocomposites, providing flexibility in handling different contaminants like dyes, radionuclides, and heavy metals. Additionally, researchers also have shown the potential for recycling and regenerating post-treatment hydrogels. This approach not only addresses the challenges of wastewater treatment but also offers sustainable and effective solutions for mitigating water pollution.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.