Paradoxically, meta-analysis of human randomized controlled trials revealed that natural but not synthetic α-tocopherol supplementation significantly increases all-cause mortality at 95% confidence interval. The root cause was that natural α-tocopherol supplementation significantly depressed bioavailability of other forms of vitamin E that have better chemo-prevention capability. Meta-analysis outcome demonstrated flaws in the understanding of vitamin E. Reinterpretation of reported data provides plausible explanations to several important observations. While α-tocopherol is almost exclusively secreted in chylomicrons, enterocytes secrete tocotrienols in both chylomicrons and small high-density lipoproteins. Vitamin E secreted in chylomicrons is discriminately repacked by α-tocopherol transfer protein into nascent very low-density lipoproteins in the liver. Circulating very low-density lipoproteins undergo delipidation to form intermediate-density lipoproteins and low-density lipoproteins. Uptake of vitamin E in intermediate-density lipoproteins and low-density lipoproteins takes place at various tissues via low-density lipoproteins receptor-mediated endocytosis. Small high-density lipoproteins can deliver tocotrienols upon maturation to peripheral tissues independent of α-tocopherol transfer protein action, and uptake of vitamin E takes place at selective tissues by scavenger receptor-mediated direct vitamin E uptake. Dual absorption pathways for tocotrienols are consistent with human and animal studies. α-Tocopherol depresses the bioavailability of α-tocotrienol and has antagonistic effect on tocotrienols in chemo-prevention against degenerative diseases. Therefore, it is an undesirable component for chemo-prevention. Future research directions should be focused on tocotrienols, preferably free from α-tocopherol, for optimum chemo-prevention and benefits to mankind.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.