Affiliations 

  • 1 Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
  • 2 Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
  • 3 Department of Pharmaceutical and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
  • 4 Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Darul Ehsan, Malaysia
Biomed Res Int, 2016;2016:9704607.
PMID: 27379252 DOI: 10.1155/2016/9704607

Abstract

This study attempts to develop an experimental gestational diabetes mellitus (GDM) animal model in female Sprague-Dawley rats. Rats were fed with high fat sucrose diet, impregnated, and induced with Streptozotocin and Nicotinamide on gestational day 0 (D0). Sleeping patterns of the rats were also manipulated to induce stress, a lifestyle factor that contributes to GDM. Rats were tested for glycemic parameters (glucose, C-peptide, and insulin), lipid profiles (total cholesterol, triglycerides, HDL, and LDL), genes affecting insulin signaling (IRS-2, AKT-1, and PCK-1), glucose transporters (GLUT-2 and GLUT-4), proinflammatory cytokines (IL-6, TNF-α), and antioxidants (SOD, CAT, and GPX) on D6 and D21. GDM rats showed possible insulin resistance as evidenced by high expression of proinflammatory cytokines, PCK-1 and CRP. Furthermore, low levels of IRS-2 and AKT-1 genes and downregulation of GLUT-4 from the initial to final phases indicate possible defect of insulin signaling. GDM rats also showed an impairment of antioxidant status and a hyperlipidemic state. Additionally, GDM rats exhibited significantly higher body weight and blood glucose and lower plasma insulin level and C-peptide than control. Based on the findings outlined, the current GDM animal model closely replicates the disease state in human and can serve as a reference for future investigations.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.