Affiliations 

  • 1 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • 2 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address: suffian_annuar@um.edu.my
Ultrason Sonochem, 2017 Nov;39:250-261.
PMID: 28732944 DOI: 10.1016/j.ultsonch.2017.04.038

Abstract

Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm-2, irradiation time 120min and 0.1gL-1xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.