• 1 Plant Genetic Engineering and Molecular Biology Lab, Department of Biotechnology, Periyar University, Periyar Palkalai Nagar, Salem 636 011, TN, India
  • 2 School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
J Genet Eng Biotechnol, 2015 Dec;13(2):193-200.
PMID: 30647583 DOI: 10.1016/j.jgeb.2015.09.006


An efficient micropropagation protocol for high frequency plant regeneration was developed using nodal explants derived in vitro seedlings of Bambusa arundinacea which is an important multipurpose and edible bamboo species and recalcitrant to tissue culture. The nodal explants excised from 20-day-old seedlings were cultured on Murashige and Skoog (MS) medium fortified with various concentrations of 6-benzyl amino purine (BAP) and kinetin (KIN) (0.5-5.0 mg/l) alone and/or in combination with 0.5 mg/l of different auxins [indole-3-butyric acid (IBA) α-naphthalene acetic acid (NAA) and indole-3-acetic acid (IAA)] for shoot bud induction. The combination of BAP (3.0 mg/l) and IBA (0.5 mg/l) was found to be the best for the highest percent of shoot bud initiation (87.2%), with 24.2 shoots/explant. The highest frequency (95.2%) of shoot bud multiplication with maximum number of shoots (90.5 shoots/culture) was noticed on medium containing 4% coconut water with 4% sucrose. The regenerated shoot buds were cultured on MS medium supplemented with various concentrations of auxins alone and/or in combination with AgNO3 (0.5-4.0 mg/l) for in vitro rooting. Maximum percent of rooting (85%) was noticed on MS medium augmented with 3.0 mg/l IBA and 2.0 mg/l AgNO3 after 14 days of culture. Well rooted plantlets obtained were established in the field with 92% survival rate. The present plant regeneration protocol could be used for large scale propagation and ex-situ conservation of this important bamboo species in the near future.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.