Affiliations 

  • 1 Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, PR China
  • 2 Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
  • 3 Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
  • 4 Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia. Electronic address: tey.beng.ti@monash.edu
Adv Colloid Interface Sci, 2020 Mar;277:102117.
PMID: 32035999 DOI: 10.1016/j.cis.2020.102117

Abstract

Recently, there have been increasing demand for the application of Pickering emulsions in various industries due to its combined advantage in terms of cost, quality and sustainability. This review aims to provide a complete overview of the available methodology for the physical characterization of emulsions that are stabilized by solid particles (known as Pickering emulsion). Current approaches and techniques for the analysis of the formation and properties of the Pickering emulsion were outlined along with the expected results of these methods on the emulsions. Besides, the application of modelling techniques has also been elaborated for the effective characterization of Pickering emulsions. Additionally, approaches to assess the stability of Pickering emulsions against physical deformation such as coalescence and gravitational separation were reviewed. Potential future developments of these characterization techniques were also briefly discussed. This review can act as a guide to researchers to better understand the standard procedures of Pickering emulsion assessment and the advanced methods available to date to study these emulsions, down to the minute details.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.