Affiliations 

  • 1 Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Food Technol Biotechnol, 2019 Dec;57(4):472-480.
PMID: 32123509 DOI: 10.17113/ftb.57.04.19.6294

Abstract

The pleasant taste of edible mushrooms, which is attributed to their high protein content, makes them an attractive source for the production of protein hydrolysates with good taste properties. In the present work, different mushroom protein hydrolysates were produced from shiitake, oyster, bunashimeji and enoki mushrooms using stem bromelain hydrolysis at 0.5% (m/m) enzyme/substrate ratio at pH=6.5 and 40 °C for 20 h. The produced liquid mushroom protein hydrolysate yielded 0.77-0.92% crude protein (p>0.05). Bunashimeji mushroom protein hydrolysate was the lightest in colour, while shiitake mushroom protein hydrolysate was the darkest (p<0.05). Enoki mushroom protein hydrolysate had the highest dry matter content. There was no significant difference in the degree of hydrolysis among different mushroom protein hydrolysates (53.52-67.13%, p>0.05), with the highest yield of bunashimeji and the lowest of shiitake mushroom protein hydrolysate (p<0.05). Preference test of chicken soup with added different mushroom protein hydrolysates was performed using 58 untrained panellists to evaluate their taste-enhancing effect, compared to monosodium glutamate (MSG). Soup with MSG had the highest score for the tested attributes, while soups with bunashimeji and oyster mushroom protein hydrolysates showed higher aroma, taste, mouthfeel and overall preference scores than negative control, which contained neither MSG nor any of the hydrolysates (p<0.05). This finding suggests that bunashimeji and oyster mushroom protein hydrolysate have the potential to be used as taste enhancers in food applications.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.