Affiliations 

  • 1 Universiti Malaysia Terengganu
MyJurnal

Abstract

2nd-order ODEs can be found in many applications, e.g., motion of pendulum, vibrating springs, etc. We first convert the 2nd-order nonlinear ODEs to a system of 1st-order ODEs which is easier to deal with. Then, Adams-Bashforth (AB) methods are used to solve the resulting system of 1st-order ODE. AB methods are chosen since they are the explicit schemes and more efficient in terms of shorter computational time. However, the step size is more restrictive since these methods are conditionally stable. We find two test cases (one test problem and one manufactured solution) to be used to validate the AB methods. The exact solution for both test cases are available for the error and convergence analysis later on. The implementation of 1st-, 2nd- and 3rd-order AB methods are done using Octave. The error was computed to retrieve the order of convergence numerically and the CPU time was recorded to analyze their efficiency.