Affiliations 

  • 1 Advanced Biotechnology and Breeding Centre (ABBC) Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
  • 2 Advanced Biotechnology and Breeding Centre (ABBC) Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia. masani@mpob.gov.my
J Genet Eng Biotechnol, 2021 Jun 11;19(1):86.
PMID: 34115267 DOI: 10.1186/s43141-021-00185-4

Abstract

BACKGROUND: Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement. However, most of the applied CRISPR/Cas9 systems targeting one locus using a sgRNA resulted in low genome editing efficiency.

RESULTS: Here, we demonstrate the modification of the FAD2 gene in rice using a multiplex sgRNA-CRISPR/Cas9 genome editing system. To test the system's efficiency for targeting multiple loci in rice, we designed two sgRNAs based on FAD2 gene sequence of the Oryza sativa Japonica rice. We then inserted the validated sgRNAs into a CRISPR/Cas9 basic vector to construct pYLCRISPRCas9PUbi-H:OsFAD2. The vector was then transformed into protoplast cells isolated from rice leaf tissue via PEG-mediated transfection, and rice calli using biolistic transformation. Direct DNA sequencing of PCR products revealed mutations consisting of deletions of the DNA region between the two target sgRNAs.

CONCLUSION: The results suggested that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing system may be useful for crop improvement in monocot species that are recalcitrant to genetic modification, such as oil palm.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.