Affiliations 

  • 1 Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
  • 2 School of Business, Monash University Malaysia, Bandar Sunway 47500, Malaysia
Life (Basel), 2021 Jun 20;11(6).
PMID: 34202937 DOI: 10.3390/life11060585

Abstract

The neuroprotective potential of Orthosiphon stamineus leaf proteins (OSLPs) has never been evaluated in SH-SY5Y cells challenged by hydrogen peroxide (H2O2). This work thus aims to elucidate OSLP neuroprotective potential in alleviating H2O2 stress. OSLPs at varying concentrations were evaluated for cytotoxicity (24 and 48 h) and neuroprotective potential in H2O2-induced SH-SY5Y cells (24 h). The protective mechanism of H2O2-induced SH-SY5Y cells was also explored via mass-spectrometry-based label-free quantitative proteomics (LFQ) and bioinformatics. OSLPs (25, 50, 125, 250, 500, and 1000 µg/mL; 24 and 48 h) were found to be safe. Pre-treatments with OSLP doses (250, 500, and 1000 µg/mL, 24 h) significantly increased the survival of SH-SY5Y cells in a concentration-dependent manner and improved cell architecture-pyramidal-shaped cells, reduced clumping and shrinkage, with apparent neurite formations. OSLP pre-treatment (1000 µg/mL, 24 h) lowered the expressions of two major heat shock proteins, HSPA8 (heat shock protein family A (Hsp70) member 8) and HSP90AA1 (heat shock protein 90), which promote cellular stress signaling under stress conditions. OSLP is, therefore, suggested to be anti-inflammatory by modulating the "signaling of interleukin-4 and interleukin-13" pathway as the predominant mechanism in addition to regulating the "attenuation phase" and "HSP90 chaperone cycle for steroid hormone receptors" pathways to counteract heat shock protein (HSP)-induced damage under stress conditions.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.