Displaying all 2 publications

Abstract:
Sort:
  1. Moradi F, Jalili M, Saraee KRE, Abdi MR, Rashid HAA
    Biomed Phys Eng Express, 2024 Feb 14;10(2).
    PMID: 38320327 DOI: 10.1088/2057-1976/ad26d5
    The inherent biological hazards associated with ionizing radiation necessitate the implementation of effective shielding measures, particularly in medical applications. Interventional radiology, in particular, poses a unique challenge as it often exposes medical personnel to prolonged periods of high x-ray doses. Historically, lead and lead-based compounds have been the primary materials employed for shielding against photons. However, the drawbacks of lead, including its substantial weight causing personnel's inflexibility and its toxicity, have raised concerns regarding its long-term impact on both human health and the environment. Barium tantalate has emerged as a promising alternative, due to its unique attenuation properties against low-energy x-rays, specifically targeting the weak absorption area of lead. In the present study, we employ the Geant4 Monte Carlo simulation tool to investigate various formulations of barium tantalate doped with rare earth elements. The aim is to identify the optimal composition for shielding x-rays in the context of interventional radiology. To achieve this, we employ a reference x-ray spectrum typical of interventional radiology procedures, with energies extending up to 90 keV, within a carefully designed simulation setup. Our primary performance indicator is the reduction in air kerma transmission. Furthermore, we assess the absorbed doses to critical organs at risk within a standard human body phantom protected by the shield. Our results demonstrate that specific concentrations of the examined rare earth impurities can enhance the shielding performance of barium tantalate. To mitigate x-ray exposure in interventional radiology, our analysis reveals that the most effective shielding performance is achieved when using barium tantalate compositions containing 15% Erbium or 10% Samarium by weight. These findings suggest the possibility of developing lead-free shielding solutions or apron for interventional radiology personnel, offering a remarkable reduction in weight (exceeding 30%) while maintaining shielding performance at levels comparable to traditional lead-based materials.
  2. Rezaee Ebrahim Saraee K, Abdi MR, Naghavi K, Saion E, Shafaei MA, Soltani N
    Environ Monit Assess, 2011 Dec;183(1-4):545-54.
    PMID: 21594644 DOI: 10.1007/s10661-011-1939-4
    The concentrations of arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc in surface sediments collected from the east coast of peninsular Malaysia, along the South China Sea, were measured by two methods instrumental neutron activation analysis and inductively coupled plasma mass spectroscopy. The obtained results were use to determine the areal distribution of the metals of in the east coast of peninsular Malaysia and potential sources of these metals to this environment. The geochemical data propose that most of the metals found in the east coast of peninsular Malaysia constitute a redistribution of territorial materials within the ecosystem. Then, the metal concentrations can be considered to be present at natural background levels in surface sediments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links