Displaying all 7 publications

Abstract:
Sort:
  1. Shaharin Fadzli Abd Rahman, Mohamad Rusop Mahmood, Abdul Manaf Hashim
    Sains Malaysiana, 2014;43:1205-1211.
    We report the growth of few-layer graphene (FLG) on a nickel (Ni) substrate using palm oil as a single carbon source by thermal chemical vapor deposition (T-cvD). Using an ample amount of vaporized palm oil resulted in the formation of a thick, amorphous carbon film on the Ni surface. By decreasing the amount of the carbon source supply, thin films consisting of graphite grains and FLG were obtained at growth temperatures of 900 and 1000°C, confirming the potential of using palm oil as a source for graphene growth. The occasional voids were obtained on the transferred film and these voids were confirmed to be areas where FLGs are formed. These FIEs are likely removed during the transfer process. Further reducing the amount of palm oil suppressed the coverage of graphite grains and increased the void area formation on the transferred films, proving the increase of FLG coverage.
  2. Mastura Shafinaz Zainal Abidin, Shahjahan, Abdul Manaf Hashim
    Sains Malaysiana, 2013;42:197-203.
    Gallium nitride is considered as the most promising material for liquid-phase sensor applications due to its chemical stability and high internal piezoelectric polarization. In this work, the sensing responses of undoped-AlGaN/GaN two terminal devices upon exposure to various pH levels in aqueous solution (a mixture of HCl and NaOH) as well as their possible sensing mechanism have been investigated. No reference voltage or gate voltage is applied. The changes in drain-source current, IDS as a function of pH level were evaluated. In the acidic region, there was an almost linear change in IDS where IDS decreased with the increase in pH level. Hence, the translated channel resistance increases with the pH level. High H+ ion concentration at low pH level which corresponds to the large net positive potential on the surface leads to the enhancement of the flow of electrons in 2DEG channel. As the pH level was increased towards neutral point in the acidic region which corresponds to the increase of OH- ion concentration, the net surface potential on the surface starts to be dominated by negative potential. As a result, the 2DEG channel starts to deplete which resulted in the increase of channel resistance. The estimated current and resistance change for sensing area of 1 mm2 and drain-source voltage, VDS of 1- 6 V are in the range of 2.16-80.1 mA/pH and 154.6-500.5 kΩ/pH, respectively. However, the linear decreases of IDS were not continuously observed in the basic region where OH- ions were dominant. The IDS levels were high, showing that the flows of carriers in 2DEG channel were enhanced again. The resistance was low and almost constant in the basic region. It seems to be resulted by the formation of thin Ga(x)O(y) layer on the AlGaN surface contributed by the interaction of OH- with the Ga-face surface. Hence, the net potential on the AlGaN surface seems to be dominated again by the net positive surface potential.
  3. Shaharin Fadzli Abd Rahman, Kasai S, Abdul Manaf Hashim
    Sains Malaysiana, 2013;42:187-192.
    A graphene-based three-branch nanojunction (TBJ) device having nanowire width of 200 nm was successfully fabricated. The layer number of graphene prepared by mechanical exfoliation was determined using a simple optical contrast method which showed good agreement with theoretical value. n-type doping by Polyethylene imines (PEI) was done to control the position of Dirac point. Baking and PEI doping was found to decrease contact resistance and increase the carrier mobility. The chemically-doped TBJ graphene showed carrier mobility of 20000 cm2/Vs, which gave related mean free path of 175 nm.
  4. Nur Suhaili Abd Aziz, Muhammad Khairullah Nor Azmi, Abdul Manaf Hashim
    Sains Malaysiana, 2017;46:1083-1088.
    A one-pot green sonochemical process assisted by ascorbic acid as the reducing agent to produce highly reduced graphene oxide (rGO) decorated with silver nanoparticles (AgNPs) is demonstrated. A complete removal of oxygen-containing group in the GO sheets was confirmed by no observation of the peak corresponds to C-O, C=O and -OH bond. The unexpected decrease of peak intensity corresponds to sp2 hybridized C=C group is explained by a so-called bond polarity effect. The peak observed at ~400 nm seems to show the presence of AgNPs and the red shifting of C=C peak to ~270 nm after the introduction of ascorbic acid indicates the formation of highly reduced GO. The increase of AgNPs size and the crumpled silk-like morphology after the introduction of ascorbic acid also indicate the aggressive reduction of both AgNPs and GO. The increase of ID/IG ratio after the introduction of ascorbic acid seems to indicate the increase of the number of small sp2 domains, the presence of unrepaired defects and the restoration of the sp2 network. This work provides the promising green sonochemical approach by utilizing non-toxic and environmental-friendly reducing agent to produce highly reduced GO decorated with AgNPs for various applications.
  5. Nurul Izni Rusli, Mastura Shafinaz Zainal Abidin, Budi Astuti, Ali NK, Abdul Manaf Hashim
    Sains Malaysiana, 2013;42:643-648.
    We report the formation of macropores in n-Si (100) substrates for different etching times of 20, 40 and 60 min at a constant current density of 25 mA/cm2 under front-side illumination in HF:ethanol (1:4) solution. After etching for 20 min, four-branch-shaped pores of various sizes were observed at discrete locations. Etching time of 40 min led to the formation of highly connected four-branch-shaped pores as the branches of adjacent pores appeared to connect to each other. As the etching time was increased further to 60 min, the density of interconnected branches increased remarkably. The macropore formation process occurred in three consecutive phases. The current burst model was used to discuss this process. Formation of four-branch-shaped pores at random locations were observed because current bursts are more likely to nucleate where other current bursts took place initially.
  6. Mohammad Sarwan Mohd Sanif, Amgad Ahmed Ali, Lee MW, Lee HW, Chia Sheng DB, Abdul Manaf Hashim
    Sains Malaysiana, 2017;46:1119-1924.
    The effects of the annealing temperatures and thicknesses on the shapes, sizes and arrangement of platinum (Pt) nanoparticles (NPs) on graphene and their sensing performance for hydrogen (H2) detection were investigated. It shows strong dependency of the annealing temperatures and thicknesses on the properties of NPs. It was found that the proposed technique is able to form the NPs with good size controllability and uniformity even for thick deposited layer, thus eliminating the requirement of very thin layer of below 5 nm for the direct NP synthesis by evaporation or sputtering. The transport properties of Pt NPs/graphene structure and its sensing performance on H2 at room temperature under various H2 concentration were evaluated. The results showed an acceptable sensing response, indicating an innovative approach to fabricate Pt NPs embedded graphene for gas sensing application.
  7. Sharifabad ME, Mastura Shafinaz Zainal Abidin, Shaharin Fadzli Abd Rahman, Abdul Manaf Hashim, Abdul Rahim Abdul Rahman, Nurul Afzan Omar, et al.
    Gallium nitride with wurtzite crystal structure is a chemically stable semiconductor with high internal spontaneous and piezoelectric polarization, which make it highly suitable materials to create very sensitive and robust sensors for the detection of ions, gases and liquids. Sensing characteristics of an open-gate liquid-phase sensor fabricated on undoped-AlGaN/GaN high-electron-mobility-transistor (HEMT) structure in aqueous solution was investigated. In ambient atmosphere, the open-gate undoped AlGaN/GaN HEMT clearly showed only the presence of linear region of currents while Si-doped AlGaN/GaN showed the linear and saturation regions of currents, very similar to those of gated devices. This seems to show that very low Fermi level pinning by surface states exists in undoped AlGaN/GaN sample. In aqueous solution, the typical current-voltage (I-V) characteristics of HEMTs with good gate controllability were observed. The potential of the AlGaN surface at the open-gate area is effectively controlled via aqueous solution by Ag/AgCl reference gate electrode. The open-gate undoped AlGaN/GaN HEMT structure is capable of stable operation in aqueous electrolytes and exhibit linear sensitivity, and high sensitivity of 1.9 mA/pH or 3.88 mA/mm/pH at drain-source voltage, VDS = 5 V was obtained. Due to large leakage current where it increases with the negative reference gate voltage, the Nernstian’s like sensitivity cannot be determined. Suppression of current leakage is likely to improve the device performance. The open-gate undoped-AlGaN/GaN structure is expected to be suitable for pH sensing application.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links