Displaying 1 publication

Abstract:
Sort:
  1. Alfarisi, H. A. H., Ibrahim, M.,, Mohamed, Z. B. H., Hamdan, A. H., Che Mohamad, C. A.
    MyJurnal
    Oxidative stress and reactive oxygen species (ROS) constitute a major pathogenic mechanism
    for the development of atherosclerosis. In the present work, the antioxidant potential of
    Trihoney was investigated in hypercholesterolaemic rabbits. Thirty-six male New Zealand
    white (NZW) rabbits were grouped into: normal diet (C), normal diet with 0.6 g/kg/day of
    Trihoney (C+H), 1% cholesterol diet (HCD), 1% cholesterol diet with 0.3 g/kg/day of
    Trihoney (HCD+H1
    ), 1% cholesterol diet with 0.6 g/kg/day of Trihoney (HCD+H2
    ), and 1%
    cholesterol diet with 2 mg/kg/day of atorvastatin (HCD+At.). Animals were sacrificed following 12 weeks of treatment, and their serum was analysed for oxidised-low density lipoprotein
    (Ox-LDL). Serum and aortic tissue homogenate were assayed for superoxide dismutase
    (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Hypercholesterolemia
    caused a significant (p < 0.05) elevation in serum Ox-LDL and a significant (p < 0.05) reduction of antioxidant enzyme activities in serum of the HCD group. Trihoney induced a significant (p < 0.05) increase in antioxidant enzyme activities in serum as compared to the HCD
    group. The high cholesterol diet suppressed both antioxidant enzymes in aortic homogenate.
    Trihoney significantly (p < 0.05) enhanced both antioxidant enzymes in aortic homogenate.
    Hypercholesterolemia induced a significant (p < 0.05) elevation of serum lipid peroxidation in
    the HCD group. Trihoney caused a significant (p < 0.05) reduction of lipid peroxidation in
    aortic homogenate. These results demonstrated that Trihoney has the potential to ameliorate
    oxidative stress systemically, as well as locally in the atherosclerotic aorta.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links