Displaying all 2 publications

Abstract:
Sort:
  1. Alarwali AM, Kutty MG, Al-Haddad AY, Gonzalez MAG
    Am J Dent, 2018 Feb;31(1):39-44.
    PMID: 29630804
    PURPOSE: To evaluate the fracture resistance and failure mode of three different all-ceramic crowns; CEREC Bloc, IPS e.Max Press and Cercon in a simulated clinical situation.

    METHODS: 30 extracted maxillary premolars were prepared and randomly assigned to three groups equally according to the type of crown used. The first was the CEREC group: monolithic feldspathic crowns (CEREC Blocs). The second was the E.Max group: monolithic lithium disilicate crowns (IPS e.Max Press). The third group was the Cercon group: bilayered partially stabilized zirconia crowns (Cercon). All crowns were cemented using dual-cured resin cement (ParaCore). The specimens were then subjected to thermocycling (5-55°C/500 cycles) and loaded to failure at an angle of 45° to the occlusal surface of the crown. Failure data was statistically analyzed using one-way ANOVA and Tukey's HSD post hoc test at α= 0.05. Fractographic analysis was performed to determine the fracture modes of the failed specimens.

    RESULTS: The mean fracture values for CEREC, E.Max and Cercon groups were 387± 60 N, 452 ± 86 N, and 540 ± 171 N, respectively. Significant differences were found between CEREC and Cercon groups (P< 0.05). Catastrophic fracture within the ceramic crown was the major failure mode of the CEREC group. For E.Max and Cercon groups, the major failure mode was exhibiting severe tooth fracture while the ceramic crown remained intact.

    CLINICAL SIGNIFICANCE: CEREC, IPS e.Max Press and Cercon crowns are clinically applicable as they exceeded the normal masticatory forces. However, the CEREC crown is preferred as it maintains the integrity of the natural abutment.

  2. Shahbaz M, Yusup S, Inayat A, Patrick DO, Pratama A, Ammar M
    Bioresour Technol, 2017 Oct;241:284-295.
    PMID: 28575792 DOI: 10.1016/j.biortech.2017.05.119
    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe2O3, MgO, Al2O3, and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links