Displaying publications 1 - 20 of 352 in total

  1. Syamsuddin Y, Murat MN, Hameed BH
    Bioresour. Technol., 2016 Aug;214:248-52.
    PMID: 27136612 DOI: 10.1016/j.biortech.2016.04.083
    The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil.
  2. Lieu T, Yusup S, Moniruzzaman M
    Bioresour. Technol., 2016 Jul;211:248-56.
    PMID: 27019128 DOI: 10.1016/j.biortech.2016.03.105
    Recently, a great attention has been paid to advanced microwave technology that can be used to markedly enhance the biodiesel production process. Ceiba pentandra Seed Oil containing high free fatty acids (FFA) was utilized as a non-edible feedstock for biodiesel production. Microwave-assisted esterification pretreatment was conducted to reduce the FFA content for promoting a high-quality product in the next step. At optimum condition, the conversion was achieved 94.43% using 2wt% of sulfuric acid as catalyst where as 20.83% conversion was attained without catalyst. The kinetics of this esterification reaction was also studied to determine the influence of factors on the rate of reaction and reaction mechanisms. The results indicated that microwave-assisted esterification was of endothermic second-order reaction with the activation energy of 53.717kJ/mol.
  3. Abdul PM, Jahim JM, Harun S, Markom M, Lutpi NA, Hassan O, et al.
    Bioresour. Technol., 2016 Jul;211:200-8.
    PMID: 27017130 DOI: 10.1016/j.biortech.2016.02.135
    Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites.
  4. Cheah WY, Ling TC, Juan JC, Lee DJ, Chang JS, Show PL
    Bioresour. Technol., 2016 Sep;215:346-56.
    PMID: 27090405 DOI: 10.1016/j.biortech.2016.04.019
    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.
  5. Choong YY, Norli I, Abdullah AZ, Yhaya MF
    Bioresour. Technol., 2016 Jun;209:369-79.
    PMID: 27005788 DOI: 10.1016/j.biortech.2016.03.028
    This paper critically reviews the impacts of supplementing trace elements on the anaerobic digestion performance. The in-depth knowledge of trace elements as micronutrients and metalloenzyme components justifies trace element supplementation into the anaerobic digestion system. Most of the earlier studies reported that trace elements addition at (sub)optimum dosages had positive impacts mainly longer term on digester stability with greater organic matter degradation, low volatile fatty acids (VFA) concentration and higher biogas production. However, these positive impacts and element requirements are not fully understood, they are explained on a case to case basis because of the great variance of the anaerobic digestion operation. Iron (Fe), nickel (Ni) and cobalt (Co) are the most studied and desirable elements. The right combination of multi-elements supplementation can have greater positive impact. This measure is highly recommended, especially for the mono-digestion of micronutrient-deficient substrates. The future research should consider the aspect of trace element bioavailability.
  6. Wahidin S, Idris A, Shaleh SR
    Bioresour. Technol., 2016 Apr;206:150-4.
    PMID: 26851899 DOI: 10.1016/j.biortech.2016.01.084
    The wet biomass microalgae of Nannochloropsis sp. was converted to biodiesel using direct transesterification (DT) by microwave technique and ionic liquid (IL) as the green solvent. Three different ionic liquids; 1-butyl-3-metyhlimidazolium chloride ([BMIM][Cl], 1-ethyl-3-methylimmidazolium methyl sulphate [EMIM][MeSO4] and 1-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][CF3SO3]) and organic solvents (hexane and methanol) were used as co-solvents under microwave irradiation and their performances in terms of percentage disruption, cell walls ruptured and biodiesel yields were compared at different reaction times (5, 10 and 15 min). [EMIM][MeSO4] showed highest percentage cell disruption (99.73%) and biodiesel yield (36.79% per dried biomass) after 15 min of simultaneous reaction. The results demonstrated that simultaneous extraction-transesterification using ILs and microwave irradiation is a potential alternative method for biodiesel production.
  7. Tee PF, Abdullah MO, Tan IA, Mohamed Amin MA, Nolasco-Hipolito C, Bujang K
    Bioresour. Technol., 2016 May 28;216:478-485.
    PMID: 27268432 DOI: 10.1016/j.biortech.2016.05.112
    An air-cathode MFC-adsorption hybrid system, made from earthen pot was designed and tested for simultaneous wastewater treatment and energy recovery. Such design had demonstrated superior characteristics of low internal resistance (29.3Ω) and favor to low-cost, efficient wastewater treatment and power generation (55mW/m(3)) with average current of 2.13±0.4mA. The performance between MFC-adsorption hybrid system was compared to the standalone adsorption system and results had demonstrated great pollutants removals of the integrated system especially for chemical oxygen demand (COD), biochemical oxygen demand (BOD3), total organic carbon (TOC), total volatile solids (TVS), ammoniacal nitrogen (NH3-N) and total nitrogen (TN) because such system combines the advantages of each individual unit. Besides the typical biological and electrochemical processes that happened in an MFC system, an additional physicochemical process from the activated carbon took place simultaneously in the MFC-adsorption hybrid system which would further improved on the wastewater quality.
  8. Zakaria MR, Hirata S, Fujimoto S, Ibrahim I, Hassan MA
    Bioresour. Technol., 2016 Jan;200:541-7.
    PMID: 26524253 DOI: 10.1016/j.biortech.2015.10.075
    Oil palm mesocarp fiber was subjected to hydrothermal pretreatment under isothermal and non-isothermal conditions. The pretreated slurries were separated by filtration, pretreated liquids and solids were characterized. An enzymatic digestibility study was performed for both pretreated slurries and solids to understand the effect of soluble inhibitors generated during the pretreatment process. The highest glucose yield obtained from pretreated slurries was 70.1%, and gradually decreased with higher pretreatment severities. The highest glucose yield obtained in pretreated solids was 100%, after pretreatment at 210°C for 20min. In order to study the inhibitory effects of compounds generated during pretreatment with cellulase, technical grade solutions that mimic the pretreated liquid were prepared and their effect on Acremonium cellulase activity was monitored using Avicel. Xylo-oligomers and tannic acid were identified as powerful inhibitors of Acremonium cellulase, and the lowest hydrolysis rate of Avicel of 0.18g/g-glucose released/L/h was obtained from tannic acid.
  9. Islam MA, Auta M, Kabir G, Hameed BH
    Bioresour. Technol., 2016 Jan;200:335-41.
    PMID: 26512856 DOI: 10.1016/j.biortech.2015.09.057
    The combustion characteristics of Karanj fruit hulls char (KFH-char) was investigated with thermogravimetry analysis (TGA). The TGA outlined the char combustion thermographs at a different heating rate and isoconversional methods expressed the combustion kinetics. The Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods authenticated the char average activation energy at 62.13 and 68.53kJ/mol respectively, enough to derive the char to burnout. However, the Coats-Redfern method verified the char combustion via complex multi-step mechanism; the second stage mechanism has 135kJ/mol average activation energy. The TGA thermographs and kinetic parameters revealed the adequacy of the KFH-char as fuel substrate than its precursor, Karanj fruit hulls (KFH).
  10. Shukor H, Abdeshahian P, Al-Shorgani NK, Hamid AA, Rahman NA, Kalil MS
    Bioresour. Technol., 2016 Feb;202:206-13.
    PMID: 26710346 DOI: 10.1016/j.biortech.2015.11.078
    In this work, hydrolysis of cellulose and hemicellulose content of palm kernel cake (PKC) by different types of hydrolytic enzymes was studied to evaluate monomeric sugars released for production of biobutanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in acetone-butanol-ethanol (ABE) fermentation. Experimental results revealed that when PKC was hydrolyzed by mixed β-glucosidase, cellulase and mannanase, a total simple sugars of 87.81±4.78 g/L were produced, which resulted in 3.75±0.18 g/L butanol and 6.44±0.43 g/L ABE at 168 h fermentation. In order to increase saccharolytic efficiency of enzymatic treatment, PKC was pretreated by liquid hot water before performing enzymatic hydrolysis. Test results showed that total reducing sugars were enhanced to 97.81±1.29 g/L with elevated production of butanol and ABE up to 4.15±1.18 and 7.12±2.06 g/L, respectively which represented an A:B:E ratio of 7:11:1.
  11. Tan L, Wang M, Li X, Li H, Zhao J, Qu Y, et al.
    Bioresour. Technol., 2016 Jan;200:572-8.
    PMID: 26539970 DOI: 10.1016/j.biortech.2015.10.079
    In this work, fractionation of empty fruit bunch (EFB) by bisulfite pretreatment was studied for the production of bioethanol and high value products to achieve biorefinery of EFB. EFB was fractionated to solid and liquor components by bisulfite process. The solid components were used for bioethanol production by quasi-simultaneous saccharification and fermentation. The liquor components were then converted to furfural by hydrolysis with sulfuric acid. Preliminary results showed that the concentration of furfural was highest at 18.8g/L with 0.75% sulfuric acid and reaction time of 25min. The conversion of xylose to furfural was 82.5%. Furthermore, we attempted to fractionate the liquor into hemicellulose sugars and lignin by different methods for producing potential chemicals, such as xylose, xylooligosaccharide, and lignosulfonate. Our research showed that the combination of bisulfite pretreatment and resin separation could effectively fractionate EFB components to produce bioethanol and other high value chemicals.
  12. Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, et al.
    Bioresour. Technol., 2016 Mar;203:190-7.
    PMID: 26724550 DOI: 10.1016/j.biortech.2015.12.011
    This study demonstrated a successful operation of up-flow constructed wetland-microbial fuel cell (UFCW-MFC) in wastewater treatment and energy recovery. The goals of this study were to investigate the effect of circuit connection, organic loading rates, and electrode spacing on the performance of wastewater treatment and bioelectricity generation. The average influent of COD, NO3(-) and NH4(+) were 624 mg/L, 142 mg/L, 40 mg/L, respectively and their removal efficiencies (1 day HRT) were 99%, 46%, and 96%, respectively. NO3(-) removal was relatively higher in the closed circuit system due to lower dissolved oxygen in the system. Despite larger electrode spacing, the voltage outputs from Anode 2 (A2) (30 cm) and Anode 3 (A3) (45 cm) were higher than from Anode 1 (A1) (15 cm) as a result of insufficient fuel supply to A1. The maximum power density and Coulombic efficiency were obtained at A2, which were 93 mW/m(3) and 1.42%, respectively.
  13. Mohtar SS, Tengku Malim Busu TN, Md Noor AM, Shaari N, Yusoff NA, Bustam Khalil MA, et al.
    Bioresour. Technol., 2015 Sep;192:212-8.
    PMID: 26038325 DOI: 10.1016/j.biortech.2015.05.029
    The objective of this study is to extract and characterize lignin from oil palm biomass (OPB) by dissolution in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), followed by the lignin extraction through the CO2 gas purging prior to addition of aluminum potassium sulfate dodecahydrate (AlK(SO4)2 · 12H2O). The lignin yield, Y(L) (%wt.) was found to be dependent of the types of OPB observed for all precipitation methods used. The lignin recovery, RL (%wt.) obtained from CO2-AlK(SO4)2 · 12H2O precipitation was, however dependent on the types of OPB, which contradicted to that of the acidified H2SO4 and HCl solutions of pH 0.7 and 2 precipitations. Only about 54% of lignin was recovered from the OPB. The FTIR results indicate that the monodispersed lignin was successfully extracted from the OPT, OPF and OPEFB having a molecular weight (MW) of 1331, 1263 and 1473 g/mol, and degradation temperature of 215, 207.5 and 272 °C, respectively.
  14. An J, Nam J, Kim B, Lee HS, Kim BH, Chang IS
    Bioresour. Technol., 2015 Aug;190:175-81.
    PMID: 25941759 DOI: 10.1016/j.biortech.2015.04.071
    The effect of two different anode-embedding orientations, lengthwise- and widthwise-embedded anodes was explored, on the performance of sediment microbial fuel cells (SMFCs) using a chessboard anode. The maximum current densities and power densities in SMFCs having lengthwise-embedded anodes (SLA1-SLA10) varied from 38.2mA/m(2) to 121mA/m(2) and from 5.5mW/m(2) to 20mW/m(2). In comparison, the maximum current densities and maximum power densities in SMFCs having anodes widthwise-embedded between 0cm to 8cm (SWA2-SWA5) increased from 82mA/m(2) to 140mA/m(2) and from 14.7mW/m(2) to 31.1mW/m(2) as the anode depth became deeper. Although there was a difference in the performance among SWA5-SWA10, it was considered negligible. Hence, it is concluded that it is important to embed anodes widthwise at the specific anode depths, in order to improve of SMFC performance. Chessboard anode used in this work could be a good option for the determination of optimal anode depths.
  15. Kim BH, Lim SS, Daud WR, Gadd GM, Chang IS
    Bioresour. Technol., 2015 Aug;190:395-401.
    PMID: 25976915 DOI: 10.1016/j.biortech.2015.04.084
    The cathode reaction is one of the most important limiting factors in bioelectrochemical systems even with precious metal catalysts. Since aerobic bacteria have a much higher affinity for oxygen than any known abiotic cathode catalysts, the performance of a microbial fuel cell can be improved through the use of electrochemically-active oxygen-reducing bacteria acting as the cathode catalyst. These consume electrons available from the electrode to reduce the electron acceptors present, probably conserving energy for growth. Anaerobic bacteria reduce protons to hydrogen in microbial electrolysis cells (MECs). These aerobic and anaerobic bacterial activities resemble those catalyzing microbially-influenced corrosion (MIC). Sulfate-reducing bacteria and homoacetogens have been identified in MEC biocathodes. For sustainable operation, microbes in a biocathode should conserve energy during such electron-consuming reactions probably by similar mechanisms as those occurring in MIC. A novel hypothesis is proposed here which explains how energy can be conserved by microbes in MEC biocathodes.
  16. Yiin CL, Quitain AT, Yusup S, Sasaki M, Uemura Y, Kida T
    Bioresour. Technol., 2016 Jan;199:258-264.
    PMID: 26253419 DOI: 10.1016/j.biortech.2015.07.103
    The aim of this work was to characterize the natural low transition temperature mixtures (LTTMs) as promising green solvents for biomass pretreatment with the critical characteristics of cheap, biodegradable and renewable, which overcome the limitations of ionic liquids (ILs). The LTTMs were derived from inexpensive commercially available hydrogen bond acceptor (HBA) and l-malic acid as the hydrogen bond donor (HBD) in distinct molar ratios of starting materials and water. The peaks involved in the H-bonding shifted and became broader for the OH groups. The thermal properties of the LTTMs were not affected by water while the biopolymers solubility capacity of LTTMs was improved with the increased molar ratio of water and treatment temperature. The pretreatment of oil palm biomass was consistence with the screening on solubility of biopolymers. This work provides a cost-effective alternative to utilize microwave hydrothermal extracted green solvents such as malic acid from natural fruits and plants.
  17. Wahid R, Ward AJ, Møller HB, Søegaard K, Eriksen J
    Bioresour. Technol., 2015 Dec;198:124-32.
    PMID: 26386414 DOI: 10.1016/j.biortech.2015.08.154
    This study investigated the potentials of forbs; caraway, chicory, red clover and ribwort plantain as substrates for biogas production. One-, two- and four-cut systems were implemented and the influence on dry matter yields, chemical compositions and methane yields were examined. The two- and four-cut systems resulted in higher dry matter yields (kg [total solid, TS] ha(-1)) compared to the one-cut system. The effect of plant compositions on biogas potentials was not evident. Cumulative methane yields (LCH4kg(-1) [volatile solid, VS]) were varied from 279 to 321 (chicory), 279 to 323 (caraway), 273 to 296 (ribwort plantain), 263 to 328 (red clover) and 320 to 352 (grass-clover mixture), respectively. Methane yield was modelled by modified Gompertz equation for comparison of methane production rate. Near infrared spectroscopy showed potential as a tool for biogas and chemical composition prediction. The best prediction models were obtained for methane yield at 29 days (99 samples), cellulose, acid detergent fibre, neutral detergent fibre and crude protein, (R(2)>0.9).
  18. Bokhari A, Chuah LF, Yusup S, Klemeš JJ, Kamil RNM
    Bioresour. Technol., 2016 Jan;199:414-422.
    PMID: 26298387 DOI: 10.1016/j.biortech.2015.08.013
    Pretreatment of the high free fatty acid rubber seed oil (RSO) via esterification reaction has been investigated by using a pilot scale hydrodynamic cavitation (HC) reactor. Four newly designed orifice plate geometries are studied. Cavities are induced by assisted double diaphragm pump in the range of 1-3.5 bar inlet pressure. An optimised plate with 21 holes of 1mm diameter and inlet pressure of 3 bar resulted in RSO acid value reduction from 72.36 to 2.64 mg KOH/g within 30 min of reaction time. Reaction parameters have been optimised by using response surface methodology and found as methanol to oil ratio of 6:1, catalyst concentration of 8 wt%, reaction time of 30 min and reaction temperature of 55°C. The reaction time and esterified efficiency of HC was three fold shorter and four fold higher than mechanical stirring. This makes the HC process more environmental friendly.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links