Displaying publications 1 - 20 of 223 in total

  1. Tong CY, Derek CJC
    J Biotechnol, 2022 Dec 10;360:37-44.
    PMID: 36272576 DOI: 10.1016/j.jbiotec.2022.10.012
    An emerging biofilm immobilization method has enabled effortless biomass harvesting and promoted economic feasibility. The current limitation towards the adaptation of this technology is the inadequate understanding of the biofilm interaction towards microporous membrane. Cell adhesion is recognized as the most important step towards the immobilized cultivation of microalgae. Cell attachment kinetic was studied in a short-term batch culture of three marine diatoms, Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta over 96 h on submerged commercial polyvinylidene fluoride (PVDF) membrane under swirling motion of culture medium. Both the evolution of cell adhesion intensity and compositional changes of the extracellular polymeric substances (EPS) released were quantified throughout the cultivation period. To delve into the cell-substratum interactions, existing thermodynamics and colloidal extended Derjaguin, Landau, Vervey, and Overbeek (XDLVO) theory were employed. As a result, A. coffeaeformis and N. incerta recorded a higher cell colonization percentage than C. fusiformis being the lowest about 2.16±0.17% cell colonization due to their respective species-dependent EPS variation. Polysaccharide contents were at least two times higher than protein contents for both C. fusiformis and N. incerta except for A. coffeaeformis depicting a lower polysaccharide-to-protein ratio whereby the protein contents were maximized at 1.03 × 103 ± 64.14 pg m-2 cell-1 at 6th h. From the surface free energy point of view, both thermodynamics and XDLVO model elucidated that cells adhered reversibly in the secondary energy minimum and ranked C. fusiformis the lowest adhesion tendency among three. These findings establish fundamental knowledge about biofilm formation in porous substrate bioreactors.
    Matched MeSH terms: Microalgae*
  2. Tham PE, Ng YJ, Vadivelu N, Lim HR, Khoo KS, Chew KW, et al.
    Bioresour Technol, 2022 Feb;346:126558.
    PMID: 34906702 DOI: 10.1016/j.biortech.2021.126558
    This research work aims to fabricate an optimized up-scaled photobioreactor and extraction tank which incorporates the Internet of Things (IoT) for remote monitoring of selected parameters without being present in the lab as the industry is gradually moving towards the direction of remote operation. Several design factors were considered where modelling using ANSYS was carried out before the finalised design is drawn using AutoCAD. To monitor critical parameters that include liquid level, temperature, and pH condition during the operation of the tanks, water-proof sensors are implemented with the aid of Arduino NodeMCU board and the sensors are linked with Blynk, a smartphone application that allows remote monitoring via Wi-Fi connection. The sensors' results obtained using the Blynk application show high accuracy as compared with manual data except for photobioreactor liquid level. This shows that IoT and remote monitoring can be integrated successfully.
    Matched MeSH terms: Microalgae*
  3. Sankaran R, Parra Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, et al.
    Bioresour Technol, 2020 Feb;298:122476.
    PMID: 31810736 DOI: 10.1016/j.biortech.2019.122476
    Microalgal and lignocellulosic biomass is the most sumptuous renewable bioresource raw material existing on earth. Recently, the bioconversion of biomass into biofuels have received significant attention replacing fossil fuels. Pretreatment of biomass is a critical process in the conversion due to the nature and structure of the biomass cell wall that is complex. Although green technologies for biofuel production are advancing, the productivity and yield from these techniques are low. Over the past years, various pretreatment techniques have been developed and successfully employed to improve the technology. This paper presents an in-depth review of the recent advancement of pretreatment methods focusing on microalgal and lignocellulosic biomass. The technological approaches involving physical, chemical, biological and other latest pretreatment methods are reviewed.
    Matched MeSH terms: Microalgae*
  4. Chong CC, Cheng YW, Ishak S, Lam MK, Lim JW, Tan IS, et al.
    Sci Total Environ, 2022 Jan 10;803:150070.
    PMID: 34525689 DOI: 10.1016/j.scitotenv.2021.150070
    To suffice the escalating global energy demand, microalgae are deemed as high potential surrogate feedstocks for liquid fuels. The major encumbrance for the commercialization of microalgae cultivation is due to the high costs of nutrients such as carbon, phosphorous, and nitrogen. Meanwhile, the organic-rich anaerobic digestate which is difficult to be purified by conventional techniques is appropriate to be used as a low-cost nutrient source for the economic viability and sustainability of microalgae production. This option is also beneficial in terms of reutilize the organic fraction of solid waste instead of discarded as zero-value waste. Anaerobic digestate is the side product of biogas production during anaerobic digestion process, where optimum nutrients are needed to satisfy the physiological needs to grow microalgae. Besides, the turbidity, competing biological contaminants, ammonia and metal toxicity of the digestate are also potentially contributing to the inhibition of microalgae growth. Thus, this review is aimed to explicate the feasibility of utilizing the anaerobic digestate to cultivate microalgae by evaluating their potential challenges and solutions. The proposed potential solutions (digestate dilution and pre-treatment, microalgae strain selection, extra organics addition, nitrification and desulfurization) corresponding to the state-of-the-art challenges are applicable as future directions of the research.
    Matched MeSH terms: Microalgae*
  5. Medipally SR, Yusoff FM, Banerjee S, Shariff M
    Biomed Res Int, 2015;2015:519513.
    PMID: 25874216 DOI: 10.1155/2015/519513
    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.
    Matched MeSH terms: Microalgae/growth & development*; Microalgae/metabolism*; Microalgae/chemistry*
  6. Show KY, Lee DJ, Chang JS
    Bioresour Technol, 2013 May;135:720-9.
    PMID: 22939595 DOI: 10.1016/j.biortech.2012.08.021
    Biofuels are viewed as promising alternatives to conventional fossil fuels because they have the potential to eliminate major environmental problems created by fossil fuels. Among the still developing biofuel technologies, biodiesel production from algae offers a greater prospect for large-scale practical use, as algae are capable of producing much more yield than other biofuels. While research on algae-based biofuel is still in its developing stage, extensive work on laboratory- and pilot-scale algae harvesting systems with promising prospects has been reported. This paper presented a discussion of the literature review on recent advances in algae separation, harvesting and drying for biofuel production. The review and discussion focus on destabilization of algae, algae harvesting technologies and algae drying processes. Challenges and prospects of algae harvesting are also outlined.
    Matched MeSH terms: Microalgae/growth & development; Microalgae/metabolism*
  7. Chia SR, Mak KY, Khaw YJ, Suhaidi N, Chew KW, Show PL
    Bioresour Technol, 2019 Dec;294:122158.
    PMID: 31550634 DOI: 10.1016/j.biortech.2019.122158
    Microalgae are rich in valuable biomolecules and grow on non-arable land with rapid growth rate, which has a host of new possibility as alternative protein sources. In the present study, extraction of proteins from Chlorella vulgaris via an efficient technique, Liquid Triphasic Flotation (LTF) system, was studied. The optimized conditions in LTF system were 70% v/v of t-butanol, 40% w/v of salt solution, 0.5% w/v of biomass, pH 5.54, 1:1 of salt to t-butanol solution, and 10 min of air flotation time to attain 87.23% of protein recovery and 56.72% of separation efficiency. Besides, the study on recycling t-butanol has demonstrated that only one run was sufficient to maintain the performance of system. The efficiency of LTF in extracting protein has performed better than just Three Phase Partitioning (TPP) system. LTF system is hence an effective protein extraction and purification method with minimum operation unit and processing time.
    Matched MeSH terms: Microalgae*
  8. Sekine M, Yoshida A, Akizuki S, Kishi M, Toda T
    Water Sci Technol, 2020 Sep;82(6):1070-1080.
    PMID: 33055397 DOI: 10.2166/wst.2020.153
    A novel coupling process using an aerobic bacterial reactor with nitrification and sulfur-oxidization functions followed by a microalgal reactor was proposed for simultaneous biogas desulfurization and anaerobic digestion effluent (ADE) treatment. ADE nitrified by bacteria has a potential to be directly used as a culture medium for microalgae because ammonium nitrogen, including inhibitory free ammonia (NH3), has been converted to harmless NO3-. To demonstrate this hypothesis, Chlorella sorokiniana NIES-2173, which has ordinary NH3 tolerance; that is, 1.6 mM of EC50 compared with other species, was cultivated using untreated/treated ADE. Compared with the use of a synthetic medium, when using ADE with 1-10-fold dilutions, the specific growth rate and growth yield maximally decreased by 44% and 88%, respectively. In contrast, the algal growth using undiluted ADE treated by nitrification-desulfurization was almost the same as with using synthetic medium. It was also revealed that 50% of PO43- and most metal concentrations of ADE decreased following nitrification-desulfurization treatment. Moreover, upon NaOH addition for pH adjustment, the salinity increased to 0.66%. The decrease in metals mitigates the bioconcentration of toxic heavy metals from wastewater in microalgal biomass. Meanwhile, salt stress in microalgae and limiting nutrient supplementation, particularly for continuous cultivation, should be of concern.
    Matched MeSH terms: Microalgae*
  9. Chai WS, Tan WG, Halimatul Munawaroh HS, Gupta VK, Ho SH, Show PL
    Environ Pollut, 2021 Jan 15;269:116236.
    PMID: 33333449 DOI: 10.1016/j.envpol.2020.116236
    Microalgae have become imperative for biological wastewater treatment. Its capability in biological purification of wastewaters from different origins while utilizing wastewater as the substrate for growth has manifest great potentials as a sustainable and economical wastewater treatment method. The wastewater grown microalgae have also been remarked in research to be a significant source of value-added bioproducts and biomaterial. This paper highlights the multifaceted roles of microalgae in wastewater treatment from the extent of microalgal bioremediation function to environmental amelioration with the involvement of microalgal biomass productivity and carbon dioxide fixation. Besides, the uptake mechanism of microalgae in wastewater treatment was discussed in detail with illustrations for a comprehensive understanding of the removal process of undesirable substances. The performance of different microalgae species in the uptake of various substances was studied and summarized in this review. The correlation of microalgal treatment efficacy with various algal strain types and the bioreactors harnessed for cultivation systems was also discussed. Studies on the alternatives to conventional wastewater treatment processes and the integration of microalgae with accordant wastewater treatment methods are presented. Current research on the biological and technical approaches for the modification of algae-based wastewater system and the maximization of biomass production is also reviewed and discussed. The last portion of the review is dedicated to the assertion of challenges and future perspectives on the development of microalgae-based wastewater treatment technology. This review serves as a useful and informative reference for readers regarding the multifaceted roles of microalgae in the application of wastewater biotreatment with detailed discussion on the uptake mechanism.
    Matched MeSH terms: Microalgae*
  10. Yong JJJY, Chew KW, Khoo KS, Show PL, Chang JS
    Biotechnol Adv, 2020 12 30;47:107684.
    PMID: 33387639 DOI: 10.1016/j.biotechadv.2020.107684
    The coexistence of algae and bacteria in nature dates back to the very early stages when life came into existence. The interaction between algae and bacteria plays an important role in the planet ecology, cycling nutrients, and feeding higher trophic levels, and have been evolving ever since. The emerging concept of algal-bacterial consortia is gaining attention, much towards environmental management and protection. Studies have shown that algal-bacterial synergy does not only promote carbon capture in wastewater bioremediation but also consequently produces biofuels from algal-bacterial biomass. This review has evaluated the optimistic prospects of algal-bacterial consortia in environmental remediation, biorefinery, carbon sequestration as well as its contribution to the production of high-value compounds. In addition, algal-bacterial consortia offer great potential in bloom control, dye removal, agricultural biofertilizers, and bioplastics production. This work also emphasizes the advancement of algal-bacterial biotechnology in environmental management through the incorporation of Industry Revolution 4.0 technologies. The challenges include its pathway to greener industry, competition with other food additive sources, societal acceptance, cost feasibility, environmental trade-off, safety and compatibility. Thus, there is a need for further in-depth research to ensure the environmental sustainability and feasibility of algal-bacterial consortia to meet numerous current and future needs of society in the long run.
    Matched MeSH terms: Microalgae*
  11. Khoo CG, Lam MK, Mohamed AR, Lee KT
    Environ Res, 2020 09;188:109828.
    PMID: 32798947 DOI: 10.1016/j.envres.2020.109828
    This study aims to produce hydrochar from high-ash low-lipid Chlorella vulgaris biomass via hydrothermal carbonization (HTC) process. The effects of hydrothermal temperature and retention time with respect to the physicochemical properties of hydrochar were studied in the range of 180-250 °C and 0.5-4 h, respectively. It was found that the hydrothermal temperature had resulted in a significant reduction of hydrochar yield as compared to the retention time. The raw microalgal biomass was successfully converted into an energy densified hydrochar via an optimized HTC reaction, with higher heating value (HHV) of 24.51 kJ/g, which was approximately two-times higher than that of raw biomass. In addition, the overall carbon recovery rate and energy yield were in the range of 53.2-86.4% and 46.9-76.6%, respectively. The high quality of the produced hydrochar was further supported by the plot of van Krevelen diagram and combustion behaviour analysis. Besides, the aqueous phase collected from HTC process could be further used as nutrients source to cultivate C. vulgaris, in which up to 70% of the biomass yield could be attained as compared to the control cultivation condition. The reusability of the aqueous phase collected from HTC process as an alternative nutrients source to cultivate microalgal indicated the feasibility and positive integration of HTC process in microalgal biofuel processing chain.
    Matched MeSH terms: Microalgae*
  12. Azmi AAB, Chew KW, Chia WY, Mubashir M, Sankaran R, Lam MK, et al.
    Bioresour Technol, 2021 Aug;333:125197.
    PMID: 33930672 DOI: 10.1016/j.biortech.2021.125197
    The work aimed to study the potential in producing a system with high microalgal protein recovery and separation by utilizing a one-step or integrated downstream process. This in turn enables green biorefinery of protein, contributing to circular bioeconomy whereby less energy, labor, and cost are required for the process. By utilizing electric three phase partitioning flotation system, high protein recovery yield, R of 99.42 ± 0.52% and high separation efficiency, E of 52.72 ± 0.40% system was developed. Scaling up also showed high protein recovery yield with R value of 89.13 ± 1.56%. Total processing duration (extraction, separation, and purification) was also significantly reduced to 10 min. This system showed remarkable potential in reducing processing time, alternatively cost of production, benefiting microalgal downstream processing. Concisely, through this system, microalgal bioprocessing will no longer be complex allowing a wide array of potentials for further studies in this field.
    Matched MeSH terms: Microalgae*
  13. Koyande AK, Chew KW, Show PL, Munawaroh HSH, Chang JS
    Bioresour Technol, 2021 Aug;333:125075.
    PMID: 33872996 DOI: 10.1016/j.biortech.2021.125075
    Microalgae are potential sustainable renewable sources of energy but are highly underutilized due to the expensive and time-consuming downstream processing. This study aims at curbing these obstacles by extracting multiple components with a single processing unit. In this work, an ultrasound-assisted liquid triphasic flotation system was incorporated to extract proteins, lipids, and carbohydrates by phase separation. The parameters involved were optimized and the final recovery efficiency of proteins, lipids, and carbohydrates was determined. A control run involving conventional three-phase partitioning and a 15-fold scale-up system with the recycling of phase components were also performed. Gas Chromatograph and Fourier Transform Infrared spectroscopy were used to examine the potential of extracted products as a source of biofuel. This biorefinery approach is crucial in commercializing microalgae for biodiesel and bioethanol generation with a side product of purified proteins as feed.
    Matched MeSH terms: Microalgae*
  14. Leong WH, Lim JW, Lam MK, Lam SM, Sin JC, Samson A
    J Hazard Mater, 2021 05 05;409:124455.
    PMID: 33168319 DOI: 10.1016/j.jhazmat.2020.124455
    A novel sequential flow baffled microalgal-bacterial (SFB-AlgalBac) photobioreactor was designed to cater for the synergistic interactions between microalgal and bacterial consortia to enhance nitrogen assimilation into microalgal biomass from nutrient-rich wastewater medium. The performance of the SFB-AlgalBac photobioreactor was found to be optimum at the influent flow rate of 5.0 L/d, equivalent to 20 days of hydraulic retention time (HRT). The highest microalgal nitrogen assimilation rate (0.0271 /d) and biomass productivity (1350 mg/d) were recorded amidst this flow rate. Further increase to the 10.0 L/d flow rate reduced the photobioreactor performance, as evidenced by a reduction in microalgal biomass productivity (>10%). The microalgal biomass per unit of nitrogen assimilated values were attained at 16.69 mg/mg for the 5.0 L/d flow rate as opposed to 7.73 mg/mg for the 10.0 L/d flow rate, despite both having comparable specific growth rates. Also, the prior influent treatment by activated sludge was found to exude extracellular polymeric substances which significantly improved the microalgal biomass settleability up to 37%. The employment of SFB-AlgalBac photobioreactor is anticipated could exploit the low-cost nitrogen sources from nutrient-rich wastewaters via bioconversion into valuable microalgal biomass while fulfilling the requirements of sustainable wastewater treatment technologies.
    Matched MeSH terms: Microalgae*
  15. Yap JK, Sankaran R, Chew KW, Halimatul Munawaroh HS, Ho SH, Rajesh Banu J, et al.
    Chemosphere, 2021 Oct;281:130886.
    PMID: 34020196 DOI: 10.1016/j.chemosphere.2021.130886
    Microalgae have drawn significant interest worldwide, owing to their enormous application potential in the green energy, biopharmaceutical, and nutraceutical industries. Many studies have proved and stated the potential of microalgae in the area of biofuel which is economically effective and environmentally friendly. Besides the commercial value, the potential of microalgae in environmental protection has also been investigated. Microalgae-based process is one of the most effective way to treat heavy metal pollution, compared to conventional methods, it does not release any toxic waste or harmful gases, and the aquatic organism will not receive any harmful effects. The potential dual role of microalge in phytoremedation and energy production has made it widely explored for its capability. The interest of microalgae in various application has motivated a new focus in green technologies. Considering the rapid population growth with the continuous increase on the global demand and the application of biomass in diverse field, significant upgrades have been performed to accommodate green technological advancement. In the past decade, noteworthy advancement has been made on the technology involving the diverse application of microalgae biomass. This review aims to explore on the application of microalgae and the development of green technology in various application for microalgae biomass. There is great prospects for researchers in this field to delve into other potential utilization of microalgae biomass not only for bioremediation process but also to generate revenues from microalgae by incorporating clean and green technology for long-term sustainability and environmental benefits.
    Matched MeSH terms: Microalgae*
  16. Lim HR, Khoo KS, Chew KW, Chang CK, Munawaroh HSH, Kumar PS, et al.
    Environ Pollut, 2021 Sep 01;284:117492.
    PMID: 34261213 DOI: 10.1016/j.envpol.2021.117492
    Spirulina biomass accounts for 30% of the total algae biomass production globally. In conventional process of Spirulina biomass production, cultivation using chemical-based culture medium contributes 35% of the total production cost. Moreover, the environmental impact of cultivation stage is the highest among all the production stages which resulted from the extensive usage of chemicals and nutrients. Thus, various types of culture medium such as chemical-based, modified, and alternative culture medium with highlights on wastewater medium is reviewed on the recent advances of culture media for Spirulina cultivation. Further study is needed in modifying or exploring alternative culture media utilising waste, wastewater, or by-products from industrial processes to ensure the sustainability of environment and nutrients source for cultivation in the long term. Moreover, the current development of utilising wastewater medium only support the growth of Spirulina however it cannot eliminate the negative impacts of wastewater. In fact, the recent developments in coupling with wastewater treatment technology can eradicate the negative impacts of wastewater while supporting the growth of Spirulina. The application of Spirulina cultivation in wastewater able to resolve the global environmental pollution issues, produce value added product and even generate green electricity. This would benefit the society, business, and environment in achieving a sustainable circular bioeconomy.
    Matched MeSH terms: Microalgae*
  17. Leong YK, Chew KW, Chen WH, Chang JS, Show PL
    Trends Plant Sci, 2021 07;26(7):729-740.
    PMID: 33461869 DOI: 10.1016/j.tplants.2020.12.010
    Given their advantages of high photosynthetic efficiency and non-competition with land-based crops, algae, that are carbon-hungry and sunlight-driven microbial factories, are a promising solution to resolve energy crisis, food security, and pollution problems. The ability to recycle nutrient and CO2 fixation from waste sources makes algae a valuable feedstock for biofuels, food and feeds, biochemicals, and biomaterials. Innovative technologies such as the bicarbonate-based integrated carbon capture and algae production system (BICCAPS), integrated algal bioenergy carbon capture and storage (BECCS), as well as ocean macroalgal afforestation (OMA), can be used to realize a low-carbon algal bioeconomy. We review how algae can be applied in the framework of integrated low-carbon circular bioeconomy models, focusing on sustainable biofuels, low-carbon feedstocks, carbon capture, and advances in algal biotechnology.
    Matched MeSH terms: Microalgae*
  18. Zhang C, Hasunuma T, Shiung Lam S, Kondo A, Ho SH
    Bioresour Technol, 2021 Nov;340:125638.
    PMID: 34358989 DOI: 10.1016/j.biortech.2021.125638
    Mariculture wastewater has drawn growing attention due to associated threats for coastal environment. However, most biological techniques exhibit unfavorable performance due to saline inhibition. Furthermore, only NaCl was used in most studies causing clumsy evaluation, undermining the potential of microalgal mariculture wastewater treatment. Herein, various concentrations of NaCl and sea salt are comprehensively examined and compared for their efficiencies of mariculture wastewater treatment and biodiesel conversion. The results indicate sea salt is a better trigger for treating wastewater (nearly 100% total nitrogen and total phosphorus removal) and producing high-quality biodiesel (330 mg/L•d). Structure equation model (SEM) further demonstrates the correlation of wastewater treatment performance and microalgal status is gradually weakened with increment of sea salt concentrations. Furthermore, metabolic analysis reveals enhanced photosynthesis might be the pivotal motivator for preferable outcomes under sea salt stimulation. This study provides new insights into microalgae-based approach integrating mariculture wastewater treatment and biodiesel production.
    Matched MeSH terms: Microalgae*
  19. Zhang C, Ho SH, Chen WH, Wang R, Show PL, Ong HC
    J Biotechnol, 2021 Sep 10;338:81-90.
    PMID: 34298023 DOI: 10.1016/j.jbiotec.2021.07.009
    Microalgae are a promising feedstock for carbon-neutral biofuel production due to their superior cellular composition. Alternatively, oxidative torrefaction has been recognized as a potential thermochemical technique for microalgal solid biofuel upgrading. Herein, by using microalga N. oceanica as a feedstock, several characterizations are adopted for evaluating the potential of oxidative torrefaction towards microalgal solid biofuel production. The oxidatively torrefied microalgae can be upgraded as lignite. After in-depth analysis, significant change in the surface microstructure of oxidatively torrefied microalgae is largely changed (via wrinkle and fragmentation) The hydrophobicity, thermal decomposition, thermal stability, and aromatization of oxidatively torrefied microalgae can be largely enhanced as the oxidative torrefaction severity increase. With the increasing torrefaction temperature, the hydrophobicity of oxidative torrefied microalgae gradually improved. The decomposition of C-2/3/5, and -OCH3, the CO bonds of CH3CO-, and the aromatization occurs via oxidative torrefaction according to the NMR analysis. For XPS analysis, torrefaction operation significantly decreases the carbide carbon and enhances the graphitization. As a result, the thermal stability of oxidatively torrefied microalgae is improved. Conclusively, the information obtained in this study can provide insights into the evaluation of oxidative torrefaction performance and fuel properties of microalgal solid biofuel, which may help accelerate the advancement of oxidative torrefaction industrialization.
    Matched MeSH terms: Microalgae*
  20. Hii KS, Mohd-Din M, Luo Z, Tan SN, Lim ZF, Lee LK, et al.
    Harmful Algae, 2021 07;107:102077.
    PMID: 34456026 DOI: 10.1016/j.hal.2021.102077
    Coastal ecosystems are often subjected to anthropogenic disturbances that lead to water quality deterioration and an increase in harmful algal bloom (HAB) events. Using the next-generation molecular tool of 18S rDNA metabarcoding, we examined the community assemblages of HAB species in the Johor Strait, Malaysia between May 2018 and September 2019, covering 19 stations across the strait. The molecular operational taxonomic units (OTUs) of HAB taxa retrieved from the dataset (n = 194) revealed a much higher number of HAB taxa (26 OTUs) than before, with 12 taxa belong to new records in the strait. As revealed in the findings of this study, the diversity and community structure of HAB taxa varied significantly over time and space. The most common and abundant HAB taxa in the strait (frequency of occurrence >70%) comprised Heterosigma akashiwo, Fibrocapsa japonica, Pseudo-nitzschia pungens, Dinophysis spp., Gymnodinium catenatum, Alexandrium leei, and A. tamiyavanichii. Also, our results demonstrated that the HAB community assemblages in the strait were dependent on the interplay of environmental variables that influence by the monsoonal effects. Different HAB taxa, constitute various functional types, occupied and prevailed in different environmental niches across space and time, leading to diverse community assemblages and population density. This study adds to the current understandings of HAB dynamics and provides a robust overview of temporal-spatial changes in HAB community assemblages along the environmental gradients in a tropical eutrophic coastal ecosystem.
    Matched MeSH terms: Microalgae*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links