Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Tan SA, Goya L, Ramanathan S, Sulaiman SF, Alam M, Navaratnam V
    Food Res. Int., 2014 Oct;64:387-395.
    PMID: 30011665 DOI: 10.1016/j.foodres.2014.06.040
    Extract from papaya leaves, a waste material from fruit farms in Malaysia was previously reported to possess remarkable antioxidative activities. In this study, papaya leaf extract was separated into fractions of different polarities [petroleum ether (PE), ethyl acetate (EA), n-butanol (NB) and water (W) fractions]. The aim of this research was to determine the most active fraction in terms of its chemopreventive effects towards oxidative stress and the chemical constituents involved. The cytoprotective nature of the papaya fractions was observed against t-BOOH-induced oxidative stress on HepG2 liver cell line. ROS assay indicated that only PE and EA effectively reduced the increment of radical due to the pro-oxidant, t-BOOH. Nevertheless, PE was a stronger ROS scavenger by demonstrating ROS reducing activity in a dose-dependent manner to the basal level. This fraction was also found to inhibit cell death caused by t-BOOH toxicity, attenuating lactate dehydrogenase enzyme leakage by more than 90% (p<0.05). In addition, gene expression of phase II antioxidant enzymes (hmox-1 and nqo-1) and their transcription factor (nrf-2) were shown to be upregulated upon PE treatment during a time-course study. A GC-MS fingerprint of the active fraction was subsequently obtained with standardization using the marker compound; α-tocopherol, a well known antioxidant. However, this pure compound was not as effective as its corresponding PE concentrations in ROS reduction. Hence, PE of papaya leaf extract was a strong antioxidant and cytoprotectant with tremendous potential to be harnessed into the next therapeutic remedy against oxidative stress of the liver.
  2. Ng SP, Lai OM, Abas F, Lim HK, Tan CP
    Food Res. Int., 2014 Oct;64:919-930.
    PMID: 30011735 DOI: 10.1016/j.foodres.2014.08.045
    The rheological properties, microstructure, textural properties, colour and droplet size distribution of mayonnaise-like emulsion models prepared using 10-30wt.% of palm olein-based diacylglycerol (POL-DAG) oil were compared with those of the control (100wt.% VCO) model. There were significant (P<0.05) differences in the particle size distribution of the oil droplets, the textural properties, and the rheological properties of the various emulsion models. The rheological analysis included the determination of the flow curves, yield stress, thixotropy, apparent viscosity, and viscoelastic parameters. The concentrated oil-in-water (O/W) emulsion with 30wt.% POL-DAG substitution exhibited high thixotropy. The POL-DAG content had a substantial effect on the rheological properties of yield stress, storage modulus (G') and loss modulus (G″). The pseudoplastic behaviour of the emulsions was demonstrated. The size of the particles in the 30% POL-DAG-substituted emulsion was dramatically increased after one day and 30days of storage. All of the emulsion samples with POL-DAG substituted for VCO showed a relatively non-uniform bimodal droplet size distribution after one day of storage. In general, substitution of 10-20wt.% POL-DAG oil is appropriate for preparing O/W emulsions that had flow curves and textural properties similar to those of the control sample.
  3. Nagappan H, Pee PP, Kee SHY, Ow JT, Yan SW, Chew LY, et al.
    Food Res. Int., 2017 09;99(Pt 2):950-958.
    PMID: 28847432 DOI: 10.1016/j.foodres.2017.01.023
    Two Malaysian brown seaweeds, Sargassum siliquosum and Sargassum polycystum were first extracted using methanol to get the crude extract (CE) and further fractionated to obtain fucoxanthin-rich fraction (FRF). Samples were evaluated for their phenolic, flavonoid, and fucoxanthin contents, as well as their inhibitory activities towards low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase. In LDL oxidation assay, an increasing trend in antioxidant activity was observed as the concentration of FRF (0.04-0.2mg/mL) and CE (0.2-1.0mg/mL) increased, though not statistically significant. As for serum oxidation assay, significant decrease in antioxidant activity was observed as concentration of FRF increased, while CE showed no significant difference in inhibitory activity across the concentrations used. The IC50 values for ACE inhibitory activity of CE (0.03-0.42mg/mL) were lower than that of FRF (0.94-1.53mg/mL). When compared to reference drug Voglibose (IC50 value of 0.61mg/mL) in the effectiveness in inhibiting α-amylase, CE (0.58mg/mL) gave significantly lower IC50 values while FRF (0.68-0.71mg/mL) had significantly higher IC50 values. The α-glucosidase inhibitory activity of CE (IC50 value of 0.57-0.69mg/mL) and FRF (IC50 value of 0.50-0.53mg/mL) were comparable to that of reference drug (IC50 value of 0.54mg/mL). Results had shown the potential of S. siliquosum and S. polycystum in reducing cardiovascular diseases related risk factors following their inhibitory activities on ACE, α-amylase and α-glucosidase. In addition, it is likelihood that FRF possessed antioxidant activity at low concentration level.
  4. Roohinejad S, Koubaa M, Barba FJ, Saljoughian S, Amid M, Greiner R
    Food Res. Int., 2017 09;99(Pt 3):1066-1083.
    PMID: 28865618 DOI: 10.1016/j.foodres.2016.08.016
    Edible seaweeds are a good source of antioxidants, dietary fibers, essential amino acids, vitamins, phytochemicals, polyunsaturated fatty acids, and minerals. Many studies have evaluated the gelling, thickening and therapeutic properties of seaweeds when they are used individually. This review gives an overview on the nutritional, textural, sensorial, and health-related properties of food products enriched with seaweeds and seaweed extracts. The effect of seaweed incorporation on properties of meat, fish, bakery, and other food products were highlighted in depth. Moreover, the positive effects of foods enriched with seaweeds and seaweed extracts on different lifestyle diseases such as obesity, dyslipidemia, hypertension, and diabetes were also discussed. The results of the studies demonstrated that the addition of seaweeds, in powder or extract form, can improve the nutritional and textural properties of food products. Additionally, low-fat products with less calories and less saturated fatty acids can be prepared using seaweeds. Moreover, the addition of seaweeds also affected the health properties of food products. The results of these studies demonstrated that the health value, shelf-life and overall quality of foods can be improved through the addition of either seaweeds or seaweed extracts.
  5. Lee TH, Wani WA, Koay YS, Kavita S, Tan ETT, Shreaz S
    Food Res. Int., 2017 10;100(Pt 1):14-27.
    PMID: 28873672 DOI: 10.1016/j.foodres.2017.07.036
    Edible bird's nest (EBN) is an expensive animal bioproduct due to its reputation as a food and delicacy with diverse medicinal properties. One kilogram of EBN costs ~$6000 in China. EBN and its products are consumed in mostly Asian countries such as China, Hong Kong, Taiwan, Singapore, Malaysia, Indonesia, Vietnam and Thailand, making up almost 1/3 of world population. The rapid growth in EBN consumption has led to a big rise in the trade scale of its global market. Presently, various fake materials such as tremella fungus, pork skin, karaya gum, fish swimming bladder, jelly, agar, monosodium glutamate and egg white are used to adulterate EBNs for earning extra profits. Adulterated or fake EBN may be hazardous to the consumers. Thus, it is necessary to identify of the adulterants. Several sophisticated techniques based on genetics, immunochemistry, spectroscopy, chromatography and gel electrophoresis have been used for the detection of various types of adulterants in EBN. This article describes the recent advances in the authentication methods for EBN. Different genetic, immunochemical, spectroscopic and analytical methods such as genetics (DNA) based techniques, enzyme-linked immunosorbent assays, Fourier transform infrared and Raman spectroscopic techniques, and chromatographic and gel electrophoretic methods have been discussed. Besides, significance of the reported methods that might pertain them to applications in EBN industry has been described. Finally, efforts have been made to discuss the challenges and future perspectives of the authentication methods for EBN.
  6. Bin Sintang MD, Danthine S, Brown A, Van de Walle D, Patel AR, Tavernier I, et al.
    Food Res. Int., 2017 10;100(Pt 1):832-840.
    PMID: 28873756 DOI: 10.1016/j.foodres.2017.07.079
    Monoglycerides (MGs) and phytosterols (PS) are known to form firm oleogels with liquid oil. However, the oleogels are prone to undergo polymorphic transition over time that lead to crystals' aggregation thus, compromises physical properties. Thus, we combined MGs with PS to control the crystallization and modify the morphology of the combination oleogels, as both components are reported to interact together. The oleogels were prepared at different ratio combinations and characterized in their rheological, thermal, morphology, and diffraction properties. The results showed that the 8:2 MGP:PS exhibited higher storage modulus (G') than the MGP mono-component. The combination oleogels exhibited effects on the crystallization and polymorphic transition. Consequently, the effects led to change in the morphology of the combination oleogels which was visualized using optical and electron microscope. The resultant effect on the morphology is associated with crystal defect. Due to observable crystals of MGP and PS, it is speculated that the combination oleogels formed a mixed crystal system. This was confirmed with diffraction analysis in which the corresponding peaks from MGP and PS were observed in the combination oleogels. However, the 8:2 oleogel exhibited additional peak at 35.41Å. Ultimately, the 8:2 was the optimum combination observed in our study. Interestingly, this combination is inspired by nature as sterols (phytosterols) are natural component of lipid membrane whilst MGP has properties similar to phospholipids. Hence, the results of our study not only beneficial for oil structuring, but also for the fields of biophysical and pharmaceutical.
  7. Shariffa YN, Tan TB, Uthumporn U, Abas F, Mirhosseini H, Nehdi IA, et al.
    Food Res. Int., 2017 11;101:165-172.
    PMID: 28941679 DOI: 10.1016/j.foodres.2017.09.005
    The aim of this study was to develop formulations to produce lycopene nanodispersions and to investigate the effects of the homogenization pressure on the physicochemical properties of the lycopene nanodispersion. The samples were prepared by using emulsification-evaporation technique. The best formulation was achieved by dispersing an organic phase (0.3% w/v lycopene dissolved in dichloromethane) in an aqueous phase (0.3% w/v Tween 20 dissolved in deionized water) at a ratio of 1:9 by using homogenization process. The increased level of homogenization pressure to 500bar reduced the particle size and lycopene concentration significantly (p<0.05). Excessive homogenization pressure (700-900bar) resulted in large particle sizes with high dispersibility. The zeta potential and turbidity of the lycopene nanodispersion were significantly influenced by the homogenization pressure. The results from this study provided useful information for producing small-sized lycopene nanodispersions with a narrow PDI and good stability for application in beverage products.
  8. Hanafi MA, Hashim SN, Chay SY, Ebrahimpour A, Zarei M, Muhammad K, et al.
    Food Res. Int., 2018 04;106:589-597.
    PMID: 29579964 DOI: 10.1016/j.foodres.2018.01.030
    As a protein-rich, underutilized crop, green soybean could be exploited to produce hydrolysates containing angiotensin-I converting enzyme (ACE) inhibitory peptides. Defatted green soybean was hydrolyzed using four different food-grade proteases (Alcalase, Papain, Flavourzyme and Bromelain) and their ACE inhibitory activities were evaluated. The Alcalase-generated green soybean hydrolysate showed the highest ACE inhibitory activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) followed by Papain (IC50: 0.20 mg/mL at 5 h hydrolysis time), Bromelain (IC50: 0.36 mg/mL at 6 h hydrolysis time) and Flavourzyme (IC50: 1.14 mg/mL at 6 h hydrolysis time) hydrolysates. The Alcalase-generated hydrolysate was profiled based on its hydrophobicity and isoelectric point using reversed phase high performance liquid chromatography (RP-HPLC) and isoelectric point focusing (IEF) fractionators. The Alcalase-generated green soybean hydrolysate comprising of peptides EAQRLLF, PSLRSYLAE, PDRSIHGRQLAE, FITAFR and RGQVLS, revealed the highest ACE inhibitory activity of 94.19%, 99.31%, 92.92%, 101.51% and 90.40%, respectively, while their IC50 values were 878 μM, 532 μM, 1552 μM, 1342 μM and 993 μM, respectively. It can be concluded that Alcalase-digested green soybean hydrolysates could be exploited as a source of peptides to be incorporated into functional foods with antihypertensive activity.
  9. Chuah LO, Shamila Syuhada AK, Mohamad Suhaimi I, Farah Hanim T, Rusul G
    Food Res. Int., 2018 03;105:743-751.
    PMID: 29433269 DOI: 10.1016/j.foodres.2017.11.066
    We investigated the genetic relatedness, antibiotic resistance and biofilm-producing ability of 114 strains of Salmonella, belonged to three serotypes (Corvallis, Brancaster and Albany), isolated from naturally contaminated poultry and their environment in wet markets and smale-scale processing plant from northern Malaysia. Pulsed-field gel electrophoresis revealed that Salmonella strains isolated from various wet markets were clonally related, suggesting the widespread dissemination of these three serotypes in northern Malaysia. All except one strain of Salmonella were resistant to more than two classes of antibiotics, hence regarded as multidrug resistant (MDR). Resistance to sulphonamide (96.5%), ampicillin (89.5%), tetracycline (85.1%), chloramphenicol (75.4%), trimethoprim (68.4%), trimethoprim-sulfamethoxazole (67.5%), streptomycin (58.8%) and nalidixic acid (44.4%) were observed. Resistance determinants, floR, cmlA, tetA, tetB, tetG, temB, blaPSE-1, sul1, sul2, qnrA, qnrS, strA and aadA were detected by PCR among MDR Salmonella strains. Seventy-six strains (66.7%) harboured class-I integrons. The gene cassettes identified were dfrA1, dfrA12, aadA2 and an open reading frame orfC with unknown function. All Salmonella strains produced biofilm and 69.3% of them were strong biofilm-producers. Our findings suggested that most likely, persistent Salmonella colonises various sites in the processing environment by producing biofilm, which leads to their widespread dissemination in wet markets located in northern Malaysia.
  10. Amirullah NA, Zainal Abidin N, Abdullah N
    Food Res. Int., 2018 03;105:517-536.
    PMID: 29433243 DOI: 10.1016/j.foodres.2017.11.023
    Atherosclerosis is a complex pathology that involves several factors in its development, like oxidative stress, inflammation, hyperlipidemia, platelet aggregation and thrombus formation. Several drugs and therapeutic approaches have been developed to handle these aspects of atherosclerosis. However, some of these treatments can be costly and have undesirable side effects. Many constituents of mushrooms have been shown to have potential anti-atherosclerotic effects in several in vitro and in vivo studies. Recently, the possible mechanisms in which they exert these effects have also been elucidated. In this review, some of the research focusing on mushrooms and their potential anti-atherosclerotic effects are examined. Many mushroom species exhibited anti-oxidative, anti-inflammatory and hypolipidemic effects that can potentially attenuate the progression of atherosclerosis, either through their isolated compounds or use of crude extracts. More studies are focused on the effect that mushrooms have on gene expressions that are involved in oxidative stress, inflammation, and hyperlipidemia. These studies could provide us with a better understanding on the mechanisms in which the consumption of mushrooms could exert their possible anti-atherosclerotic effects. Further research needs to be done to uncover other possible mechanisms that are affected by mushroom use.
  11. Chang HW, Tan TB, Tan PY, Abas F, Lai OM, Wang Y, et al.
    Food Res. Int., 2018 03;105:482-491.
    PMID: 29433239 DOI: 10.1016/j.foodres.2017.11.034
    Fish oil-in-water emulsions containing fish oil, thiol-modified β-lactoglobulin (β-LG) fibrils, chitosan and maltodextrin were fabricated using a high-energy method. The results showed that chitosan coating induced charge reversal; denoting successful biopolymers complexation. A significantly (p<0.05) larger droplet size and lower polydispersity index value, attributed to the thicker chitosan coating at the oil-water interface, were observed. At high chitosan concentrations, the cationic nature of chitosan strengthened the electrostatic repulsion between the droplets, thus conferring high oxidative stability and low turbidity loss rate to the emulsions. The apparent viscosity of emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex was higher than those stabilized using β-LG fibrils alone, resulting in the former's higher creaming stability. Under thermal treatments (63°C and 100°C), emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex possessed higher heat stability as indicated by the consistent droplet sizes observed. Chitosan provided a thicker protective layer that protected the oil droplets against high temperature. Bridging flocculation occurred at low chitosan concentration (0.1%, w/w), as revealed through microscopic observations which indicated the presence of large flocs. All in all, this work provided us with a better understanding of the application of protein fibrils-polysaccharide complex to produce stable emulsion.
  12. Sultana S, Ali ME, Hossain MAM, Asing, Naquiah N, Zaidul ISM
    Food Res. Int., 2018 03;105:19-28.
    PMID: 29433207 DOI: 10.1016/j.foodres.2017.10.065
    Species substitution, the use of a low value fish in place of a high value fish, is the biggest problem in international trade and the leading cause of fraud in the fisheries arena sector. Current DNA barcoding systems have partly solved this problem but also failed in many instances to amplify PCR targets from highly processed products because of the degradation of a longer barcode marker (~650bp). In the present study, a novel mini barcode marker (295bp) was developed to discriminate fish species in raw and processed states forms. The barcode primers were cross-tested against 33 fish species and 15 other animal species and found to be universal for all the tested fish varieties. When 20 commercial fish products of five different categories were screened, all commercial fish sample yielded positive bands for the novel fish barcode. PCR product was sequenced to retrieve the species IDs that reflected 55% (11/20) of Malaysian fish products were mislabeled.
  13. Se KW, Ghoshal SK, Wahab RA, Ibrahim RKR, Lani MN
    Food Res. Int., 2018 03;105:453-460.
    PMID: 29433236 DOI: 10.1016/j.foodres.2017.11.012
    In this study, we propose an easy approach by combining the Fourier transform infrared and attenuated total reflectance (FTIR-ATR) spectroscopy together with chemometrics analysis for rapid detection and accurate quantification of five adulterants such as fructose, glucose, sucrose, corn syrup and cane sugar in stingless bees (Heterotrigona itama) honey harvested in Malaysia. Adulterants were classified using principal component analysis and soft independent modeling class analogy, where the first derivative of the spectra in the wavenumber range of 1180-750cm-1 was utilized. The protocol could satisfactorily discriminate the stingless bees honey samples that were adulterated with the concentrations of corn syrup above 8% (w/w) and cane sugar over 2% (w/w). Feasibility of integrating FTIR-ATR with chemometrics for precise quantification of the five adulterants was affirmed using partial least square regression (PLSR) analysis. The study found that optimal PLSR analysis achieved standard error of calibrations and standard error of predictions within an acceptable range of 0.686-1.087% and 0.581-1.489%, respectively, indicating good predictive capability. Hence, the method developed here for detecting and quantifying adulteration in H. itama honey samples is accurate and rapid, requiring only 7-8min to complete as compared to 3h for the standard method, AOAC method 998.12.
  14. Norizzah AR, Nur Azimah K, Zaliha O
    Food Res. Int., 2018 04;106:982-991.
    PMID: 29580013 DOI: 10.1016/j.foodres.2018.02.001
    Interesterification reaction involves rearrangement of the fatty acid radicals on the glycerol backbone, either randomly (chemical interesterification) or regioselectivity (enzymatic interesterification). Refined, bleached and deodourised palm oil (RBDPO) and palm kernel oil (RBDPKO) were blended in ratios from 25:75 to 75:25 (wt/wt). All blends were subjected to enzymatic (EI) and chemical interesterification (CI) using Lipozyme TL IM (4% w/w) and sodium methoxide (0.2% m/m) as the catalysts, respectively. The effect of EI and CI on the triacylglycerol (TAG) composition, thermal behaviour, polymorphism, crystal morphology and crystallisation kinetics were studied. The aim of this research is to characterise the nature of crystals in food product for certain desired structure. The crystallisation behaviour discussed in this study involves microstructure (PLM), polymorphism (XRD), thermal properties and crystallisation kinetics by DSC. The alteration in TAG composition was greater after CI as compared to EI with the reduction of LaLaLa (from 11.00% to 5.15%) and POO (from 14.28% to 4.87%). The DSC complete melting and crystallisation temperature of blend with 75% PO increased after CI, from 39.58 °C to 41.67 °C and from -30.84 °C to -28.33 °C, respectively. EI contributed to finer crystals than CI. However, the β' and β polymorph mixture and crystallisation kinetics (n = 2) of PO-PKO blends did not change after CI and EI. The knowledge on controlling crystallisation of RBDPO and RBDPKO blends is vital for proper processing condition like margarine production.
  15. Lee YY, Tang TK, Phuah ET, Karim NAA, Alitheen NBM, Tan CP, et al.
    Food Res. Int., 2018 01;103:200-207.
    PMID: 29389606 DOI: 10.1016/j.foodres.2017.10.022
    Medium-and-Long Chain Triacylglycerol (MLCT) is a type of structured lipid that is made up of medium chain, MCFA (C8-C12) and long chain, LCFA (C16-C22) fatty acid. Studies claimed that consumption of MLCT has the potential in reducing visceral fat accumulation as compared to long chain triacylglycerol, LCT. This is mainly attributed to the rapid metabolism of MCFA as compared to LCFA. Our study was designed to compare the anti-obesity effects of a enzymatically interesterified MLCT (E-MLCT) with physical blend of palm kernel and palm oil (B-PKOPO) having similar fatty acid composition and a commercial MLCT (C-MLCT) made of rapeseed/soybean oil on Diet Induced Obesity (DIO) C57BL/6J mice for a period of four months in low fat, LF (7%) and high fat, HF (30%) diet. The main aim was to determine if the anti-obesity effect of MLCT was contributed solely by its triacylglycerol structure alone or its fatty acid composition or both. Out of the three types of MLCT, mice fed with Low Fat, LF (7%) E-MLCT had significantly (P<0.05) lower body weight gain (by ~30%), body fat accumulation (by ~37%) and hormone leptin level as compared to both the LF B-PKOPO and LF C-MLCT. Histological examination further revealed that dietary intake of E-MLCT inhibited hepatic lipid accumulation. Besides, analysis of serum profile also demonstrated that consumption of E-MLCT was better in regulating blood glucose compared to B-PKOPO and C-MLCT. Nevertheless, both B-PKO-PO and E-MLCT which contained higher level of myristic acid was found to be hypercholesterolemic compared to C-MLCT. In summary, our finding showed that triacylglycerol structure, fatty acid composition and fat dosage play a pivotal role in regulating visceral fat accumulation. Consumption of E-MLCT in low fat diet led to a significantly lesser body fat accumulation. It was postulated that the MLM/MLL/LMM/MML/LLM types of triacylglycerol and C8-C12 medium chain fatty acids were the main factors that contributed to the visceral fat suppressing effect of MLCT. Despite being able to reduce body fat, the so called healthful functional oil E-MLCT when taken in high amount do resulted in fat accumulation. In summary, E-MLCT when taken in moderation can be used to manage obesity issue. However, consumption of E-MLCT may lead to higher total cholesterol and LDL level.
  16. Samsudin H, Auras R, Mishra D, Dolan K, Burgess G, Rubino M, et al.
    Food Res. Int., 2018 01;103:515-528.
    PMID: 29389642 DOI: 10.1016/j.foodres.2017.09.021
    Migration studies of chemicals from contact materials have been widely conducted due to their importance in determining the safety and shelf life of a food product in their packages. The US Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA) require this safety assessment for food contact materials. So, migration experiments are theoretically designed and experimentally conducted to obtain data that can be used to assess the kinetics of chemical release. In this work, a parameter estimation approach was used to review and to determine the mass transfer partition and diffusion coefficients governing the migration process of eight antioxidants from poly(lactic acid), PLA, based films into water/ethanol solutions at temperatures between 20 and 50°C. Scaled sensitivity coefficients were calculated to assess simultaneously estimation of a number of mass transfer parameters. An optimal experimental design approach was performed to show the importance of properly designing a migration experiment. Additional parameters also provide better insights on migration of the antioxidants. For example, the partition coefficients could be better estimated using data from the early part of the experiment instead at the end. Experiments could be conducted for shorter periods of time saving time and resources. Diffusion coefficients of the eight antioxidants from PLA films were between 0.2 and 19×10-14m2/s at ~40°C. The use of parameter estimation approach provided additional and useful insights about the migration of antioxidants from PLA films.
  17. Jahurul MHA, Zaidul ISM, Beh L, Sharifudin MS, Siddiquee S, Hasmadi M, et al.
    Food Res. Int., 2019 01;115:105-115.
    PMID: 30599921 DOI: 10.1016/j.foodres.2018.08.017
    Fruits are important food commodities that can be consumed either raw or processed and are valued for their taste, nutrients, and healthy compounds. Mangifera pajang Kosterm (bambangan) is an underutilized fruit found in Malaysia (Sabah and Sarawak), Brunei, and Indonesia (Kalimantan). It is highly fibrous and juicy with an aromatic flavour and strong smell. In recent years, bambangan fruit has been gaining more attention due to its high fibre, carotenoid content, antioxidant properties, phytochemicals, and medicinal usages. Therefore, the production, trade, and consumption of bambangan fruit could be increased significantly, both domestically and internationally, because of its nutritional value. The identification and quantification of bioactive compounds in bambangan fruit has led to considerable interest among scientists. Bambangan fruit and its waste, especially its seeds and peels, are considered cheap sources of valuable food and are considered nutraceutical ingredients that could be used to prevent various diseases. The use of bambangan fruit waste co-products for the production of bioactive components is an important step towards sustainable development. This is an updated report on the nutritional composition and health-promoting phytochemicals of bambangan fruit and its co-products that explores their potential utilization. This review reveals that bambangan fruit and its co-products could be used as ingredients of dietary fibre powder or could be incorporated into food products (biscuits and macaroni) to enhance their nutraceutical properties.
  18. Mohd Hazli UHA, Abdul-Aziz A, Mat-Junit S, Chee CF, Kong KW
    Food Res. Int., 2019 01;115:241-250.
    PMID: 30599938 DOI: 10.1016/j.foodres.2018.08.094
    Alternanthera sessilis (red) (ASR) is an edible herbal plant with many beneficial health effects. This study aimed to investigate the antioxidant components and antioxidant activities of the edible leaves and stems of ASR extracted using solvent of varying polarities namely water, ethanol, ethyl acetate and hexane. ASR leaf extracts showed higher in both antioxidant components and activities than the stem extracts. Among the antioxidant components, the ethanol leaf extract showed higher phenolic (77.29 ± 1.02 mg GAE/g extract) content while the ethyl acetate leaf extract was rich in flavonoids (157.44 ± 10.19 mg RE/g extract), carotenoids (782.97 ± 10.78 mg BE/g extract) and betalains (betanin: 67.08 ± 0.49 mg/g extract; amaranthin: 93.94 ± 0.68 mg/g extract and betaxanthin: 53.92 ± 0.88 mg/g extract). Nevertheless, the ethanol leaf extract showed the highest DPPH radical scavenging activity and ABTS radical cation scavenging activity. It also exhibited highest ferric reducing activity among all the extracts. Four polyphenolic compounds from ASR leaf, namely ferulic acid, rutin, quercetin and apigenin, were identified and quantified using ultra high performance liquid chromatography. The existence of these compounds was further verified using tandem mass spectrometry. These current results indicate that ASR leaf particularly the ethanol extract has the potential to be exploited as a source of natural antioxidants.
  19. Abiri R, Silva ALM, de Mesquita LSS, de Mesquita JWC, Atabaki N, de Almeida EB, et al.
    Food Res. Int., 2018 07;109:403-415.
    PMID: 29803465 DOI: 10.1016/j.foodres.2018.03.072
    Artemisia vulgaris is one of the important medicinal plant species of the genus Artemisia, which is usually known for its volatile oils. The genus Artemisia has become the subject of great interest due to its chemical and biological diversity as well as the discovery and isolation of promising anti-malarial drug artemisinin. A. vulgaris has a long history in treatment of human ailments by medicinal plants in various parts of the world. This medicinal plant possesses a broad spectrum of therapeutic properties including: anti-malarial, anti-inflammatory, anti-hypertensive, anti-oxidant, anti-tumoral, immunomodulatory, hepatoprotective, anti-spasmodic and anti-septic. These activities are mainly attributed to the presence of various classes of secondary metabolites, including flavonoids, sesquiterpene lactones, coumarins, acetylenes, phenolic acids, organic acids, mono- and sesquiterpenes. Studies related to A. vulgaris morphology, anatomy and phytochemistry has gained a significant interest for better understanding of production and accumulation of therapeutic compounds in this species. Recently, phytochemical and pharmacological investigations have corroborated the therapeutic potential of bioactive compounds of A. vulgaris. These findings provided further evidence for gaining deeper insight into the identification and isolation of novel compounds, which act as alternative sources of anti-malarial drugs in a cost-effective manner. Considering the rising demand and various medical applications of A. vulgaris, this review highlights the recent reports on the chemistry, biological activities and biotechnological interventions for controlled and continuous production of bioactive compounds from this plant species.
  20. Quek MC, Chin NL, Yusof YA, Law CL, Tan SW
    Food Res. Int., 2018 07;109:35-43.
    PMID: 29803459 DOI: 10.1016/j.foodres.2018.03.078
    Edible bird's nest (EBN) is a precious food made from the solidified saliva of swiftlets. EBN from three types of origin, namely production, swiftlet species and geographical were characterised based on its nutritional composition, physicochemical properties and antioxidant properties. Proximate composition, total phenolic content (TPC) and antioxidant activities were determined following official methods, while mineral and heavy metal contents were obtained by respective atomic adsorption spectrometry (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS). Amino acids profile and sialic acid were determined using high performance liquid chromatography (HPLC). Calcium and sodium were the major elements in EBN samples at averages of 17,267 mg/kg and 13,681 mg/kg, respectively. Despite protein contents were not significantly different; interestingly the total amino acids in A. fuciphagus EBN, 64.57 g/100 g was found to be 23% higher than in A. maximus EBN. EBN from house, A. fuciphagus and Peninsular Malaysia had greater antioxidant activities, 2.33-3.49 mg AAE/g and higher sialic acid, 13.57 g/100 g while those from cave, A. maximus and East Malaysia contained more minerals like calcium and magnesium. The 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and ferric ion reducing antioxidant power (FRAP) of house, A. fuciphagus and Peninsular Malaysia EBNs were approximately 2 times greater than the others. All samples were complied with the Malaysian Standard MS 2334:2011, except for mercury and nitrite. The overall findings suggest that the quality of EBN was varied following the production, species and geographical origins.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links