Displaying publications 1 - 20 of 173 in total

Abstract:
Sort:
  1. Nine MJ, Chung H, Tanshen MR, Osman NA, Jeong H
    J. Hazard. Mater., 2014 May 30;273:183-91.
    PMID: 24735805 DOI: 10.1016/j.jhazmat.2014.03.055
    A pre- and post experimental analysis of copper-water and silver-water nanofluids are conducted to investigate minimal changes in quality of nanofluids before and after an effective heat transfer. A single loop oscillating heat pipe (OHP) having inner diameter of 2.4mm is charged with aforementioned nanofluids at 60% filling ratio for end to end heat transfer. Post experimental analysis of both nanofluids raises questions to the physical, chemical and thermal stability of such suspension for hazardless uses in the field of heat transfer. The color, deposition, dispersibility, propensity to be oxidized, disintegration, agglomeration and thermal conductivity of metal nanofluids are found to be strictly affected by heat transfer process and vice versa. Such degradation in quality of basic properties of metal nanofluids implies its challenges in practical application even for short-term heat transfer operations at oxidative environment as nano-sized metal particles are chemically more unstable than its bulk material. The use of the solid/liquid suspension containing metal nanoparticles in any heat exchanger as heat carrier might be detrimental to the whole system.
  2. Poonkuzhali K, Rajeswari V, Saravanakumar T, Viswanathamurthi P, Park SM, Govarthanan M, et al.
    J. Hazard. Mater., 2014 May 15;272:89-95.
    PMID: 24681590 DOI: 10.1016/j.jhazmat.2014.03.001
    The effluent discharge treatment for controlling the environment from non biodegradable metal contaminants using plant extract is an efficient technique. The reduction of hexavalent chromium by abundantly available weed, Aerva lanata L. was investigated using batch equilibrium technique. The variables studied were Cr(VI) concentration, Aerva lanata L. dose, contact time, pH, temperature and agitation speed. Cyclic voltammetry and ICP-MS analysis confirmed the reduction of Cr(VI) to Cr(III). Electrochemical analysis proved that, the chromium has not been degraded and the valency of the chromium has only been changed. ICP-MS analysis shows that 100ng/L of hexavalent chromium was reduced to 97.01ng/L trivalent chromium. These results suggest that components present in the Aerva lanata L. are responsible for the reduction of Cr(VI) to Cr(III). The prime components ferulic acid, kaempherol and β-carboline present in the Aerva lanata L. may be responsible for the reduction of Cr(VI) as evident from LC-MS analysis.
  3. Gan S, Yap CL, Ng HK, Venny
    J. Hazard. Mater., 2013 Nov 15;262:691-700.
    PMID: 24121640 DOI: 10.1016/j.jhazmat.2013.09.023
    This study aims to investigate the impacts of ethyl lactate (EL) based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. Accumulation of oxygenated-polycyclic aromatic hydrocarbons (oxy-PAHs) was observed, but quantitative measurement on the most abundant compound 9,10-anthraquinone (ATQ) showed lower accumulation of the compound than that reported for ethanol (ET) based Fenton treatment. In general, as compared to conventional water (CW) based Fenton treatment, the EL based Fenton treatment exerted either a lower or higher negative impact on soil physicochemical properties depending on the property type and shared the main disadvantage of reduced soil pH. For revegetation, EL based Fenton treatment was most appropriately adopted for soil with native pH >/~ 6.2 in order to obtain a final soil pH >/~ 4.9 subject to the soil buffering capacity.
  4. Raoov M, Mohamad S, Abas MR
    J. Hazard. Mater., 2013 Dec 15;263 Pt 2:501-16.
    PMID: 24231314 DOI: 10.1016/j.jhazmat.2013.10.003
    Cyclodextrin-ionic liquid polymer (βCD-BIMOTs-TDI) was firstly synthesized using functionalized β-Cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using toluene diisocyanate (TDI) linker to form insoluble βCD-BIMOTs-TDI. SEM characterization result shows that βCD-BIMOTs-TDI exhibits macropore size while the BET result shows low surface area (1.254 m(2)g(-1)). The unique properties of the ILs allow us to produce materials with different morphologies. The adsorption isotherm and kinetics of 2,4-dichlorophenol (2,4-DCP) onto βCD-BIMOTs-TDI is studied. Freundlich isotherm and pseudo-second order kinetics are found to be the best to represent the data for 2,4-DCP adsorption on the βCD-BIMOTs-TDI. The presence of macropores decreases the mass transfer resistance and increases the adsorption process by reducing the diffusion distance. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for 2,4-DCP on βCD-BIMOTs-TDI were estimated as -55.99 J/Kmol and -18.10 J/mol, respectively. The negative value of Gibbs free energy (ΔG°) indicates that the adsorption process is thermodynamically feasible, spontaneous and chemically controlled. Finally, the interactions between the cavity of βCD-BIMOTs and 2,4-DCP are investigated and the results shows that the inclusion of the complex formation and π-π interaction are the main processes involved in the adsorption process.
  5. Bello MM, Nourouzi MM, Abdullah LC, Choong TS, Koay YS, Keshani S
    J. Hazard. Mater., 2013 Nov 15;262:106-13.
    PMID: 24021163 DOI: 10.1016/j.jhazmat.2013.06.053
    As Malaysia is one of the world's largest producer of palm oil, large amounts of palm oil mill effluent (POME) is generated. It was found that negatively charged components are accountable for POME color. An attempt was made to remove residual contaminants after conventional treatment using anion base resin. Adsorption experiments were carried out in fixed bed column. Various models such as the Thomas, the Yoon-Nelson, the Wolborska and BDST model were used to fit the experimental data. It was found that only the BDST model was fitted well at the initial breakthrough time. A wavelet neural network model (WNN) was developed to model the breakthrough curves in fixed bed column for multicomponent system. The results showed that the WNN model described breakthrough curves better than the commonly used models. The effects of pH, flow rate and bed depth on column performance were investigated. It was found that the highest uptake capacity was obtained at pH 3. The exhaustion time appeared to increase with increase in bed length and decrease in flow rate.
  6. Al-Baldawi IA, Abdullah SR, Anuar N, Suja F, Idris M
    J. Hazard. Mater., 2013 May 15;252-253:64-9.
    PMID: 23500791 DOI: 10.1016/j.jhazmat.2013.01.067
    In this study, bulrush (Scirpus grossus) was subjected to a 72 day phytotoxicity test to assess its ability to phytoremediate diesel contamination in simulated wastewater at different concentrations (0, 8700, 17,400 and 26,100mg/L). Diesel degradation by S. grossus was measured in terms of total petroleum hydrocarbon (TPH-D). The TPH-D concentration in the synthetic wastewater was determined with the liquid-liquid extraction method and gas chromatography. S. grossus was found to reduce TPH-D by 70.0 and 80.2% for concentrations of 8700 mg/L and 17,400mg/L, respectively. At a diesel concentration of 26,100mg/L, S. grossus died after 14 days. Additionally, the biomass of S. grossus plants was found to increase throughout the phytotoxicity test, confirming the ability of the plant to survive in water contaminated with diesel at rates of less than 17,400mg/L.
  7. Mizzouri NSh, Shaaban MG
    J. Hazard. Mater., 2013 Apr 15;250-251:333-44.
    PMID: 23474407 DOI: 10.1016/j.jhazmat.2013.01.082
    This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSSd at 12.8h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value.
  8. Naim R, Ismail AF
    J. Hazard. Mater., 2013 Apr 15;250-251:354-61.
    PMID: 23474409 DOI: 10.1016/j.jhazmat.2013.01.083
    A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor.
  9. Foo CY, Lim HN, Pandikumar A, Huang NM, Ng YH
    J. Hazard. Mater., 2016 Mar 5;304:400-8.
    PMID: 26595899 DOI: 10.1016/j.jhazmat.2015.11.004
    A newly developed CdS/rGO/CC electrode was prepared based on a flexible carbon cloth (CC) substrate with cadmium sulfide (CdS) nanoparticles and reduced graphene oxide (rGO). The CdS was synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method, and the graphene oxide was thermally reduced on the modified electrode surface. The existence of rGO in the CdS-modified electrode increased the photocurrent intensity of the CdS/rGO/CC-modified electrode by three orders of magnitude, compared to that of the CdS/ITO electrode and two orders of magnitude higher than the CdS/CC electrode. A new visible-light-prompt photoelectrochemical sensor was developed based on the competitive binding reaction of Cu(2+) and CdS on the electrode surface. The results showed that the effect of the Cu(2+) on the photocurrent response was concentration-dependent over the linear ranges of 0.1-1.0 μM and 1.0-40.0 μM with a detection limit of 0.05 μM. The results of a selectivity test showed that this modified electrode has a high response toward Cu(2+) compared to other heavy metal ions. The proposed CdS/rGO/CC electrode provided a significantly high potential current compared to other reported values, and could be a practical tool for the fast, sensitive, and selective determination of Cu(2+).
  10. Jung C, Phal N, Oh J, Chu KH, Jang M, Yoon Y
    J. Hazard. Mater., 2015 Dec 30;300:808-814.
    PMID: 26340547 DOI: 10.1016/j.jhazmat.2015.08.025
    Despite recent interest in transforming biomass into bio-oil and syngas, there is inadequate information on the compatibility of byproducts (e.g., biochar) with agriculture and water purification infrastructures. A pyrolysis at 300°C yields efficient production of biochar, and its physicochemical properties can be improved by chemical activation, resulting in a suitable adsorbent for the removal of natural organic matter (NOM), including hydrophobic and hydrophilic substances, such as humic acids (HA) and tannic acids (TA), respectively. In this study, the adsorption affinities of different HA and TA combinations in NOM solutions were evaluated, and higher adsorption affinity of TA onto activated biochar (AB) produced in the laboratory was observed due to its superior chemisorption tendencies and size-exclusion effects compared with that of HA, whereas hydrophobic interactions between adsorbent and adsorbate were deficient. Assessment of the AB role in an adsorption-coagulation hybrid system as nuclei for coagulation in the presence of aluminum sulfate (alum) showed a synergistic effect in a HA-dominated NOM solution. An AB-alum hybrid system with a high proportion of HA in the NOM solution may be applicable as an end-of-pipe solution.
  11. Al-Qaim FF, Mussa ZH, Othman MR, Abdullah MP
    J. Hazard. Mater., 2015 Dec 30;300:387-397.
    PMID: 26218306 DOI: 10.1016/j.jhazmat.2015.07.007
    The electrochemical oxidation of caffeine, a widely over-the-counter stimulant drug, has been investigated in effluent wastewater and deionized water (DIW) using graphite-poly vinyl chloride (PVC) composite electrode as anode. Effects of initial concentration of caffeine, chloride ion (Cl(-)) loading, presence of hydrogen peroxide (H2O2), sample volume, type of sample and applied voltage were determined to test and to validate a kinetic model for the oxidation of caffeine by the electrochemical oxidation process. The results revealed that the electrochemical oxidation rates of caffeine followed pseudo first-order kinetics, with rate constant values ranged from 0.006 to 0.23 min(-1) depending on the operating parameters. The removal efficiency of caffeine increases with applied voltage very significantly, suggesting a very important role of mediated oxidation process. However, the consumption energy was considered during electrochemical oxidation process. In chloride media, removal of caffeine is faster and more efficiently, although occurrence of more intermediates takes place. The study found that the adding H2O2 to the NaCl solution will inhibit slightly the electrochemical oxidation rate in comparison with only NaCl in solution. Liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS) technique was applied to the identification of the by-products generated during electrochemical oxidation, which allowed to construct the proposed structure of by-products.
  12. Rehman MA, Yusoff I, Alias Y
    J. Hazard. Mater., 2015 Dec 15;299:316-24.
    PMID: 26143194 DOI: 10.1016/j.jhazmat.2015.06.030
    A series of doped and un-doped magnetic adsorbents CuCexFe2-xO4 (x=0.0-0.5) for fluoride were prepared with the micro-emulsion method. Fluoride adsorption was optimized for solution pH, temperature, contact time, and initial concentration and was monitored via normal phase ion chromatography (IC). The effect of concomitant anions was also explored to perform and simulate competitive fluoride adsorption in real water samples. Optimal adsorption was discovered by a simple quadratic model based on central composite design (CCD) and the response surface method (RSM). The adsorption, electrochemical and magnetic properties were compared between doped and un-doped ferrites. Doped ferrites (x=0.1-0.5) were found to be superior to un-doped ferrites (x=0) regarding the active sites, functional groups and fluoride adsorption. The characterization, optimization and application results of the doped ferrites indicated enhanced fluoride adsorption and easy separation with a simple magnet.
  13. Ghanem OB, Mutalib MI, El-Harbawi M, Gonfa G, Kait CF, Alitheen NB, et al.
    J. Hazard. Mater., 2015 Oct 30;297:198-206.
    PMID: 25965417 DOI: 10.1016/j.jhazmat.2015.04.082
    Tuning the characteristics of solvents to fit industrial requirements has currently become a major interest in both academic and industrial communities, notably in the field of room temperature ionic liquids (RTILs), which are considered one of the most promising green alternatives to molecular organic solvents. In this work, several sets of imidazolium-based ionic liquids were synthesized, and their toxicities were assessed towards four human pathogens bacteria to investigate how tunability can affect this characteristic. Additionally, the toxicity of particular RTILs bearing an amino acid anion was introduced in this work. EC50 values (50% effective concentration) were established, and significant variations were observed; although all studied ILs displayed an imidazolium moiety, the toxicity values were found to vary between 0.05 mM for the most toxic to 85.57 mM for the least toxic. Linear quantitative structure activity relationship models were then developed using the charge density distribution (σ-profiles) as molecular descriptors, which can yield accuracies as high as 95%.
  14. Idris A, Misran E, Hassan N, Abd Jalil A, Seng CE
    J. Hazard. Mater., 2012 Aug 15;227-228:309-16.
    PMID: 22682796 DOI: 10.1016/j.jhazmat.2012.05.065
    In this study magnetic separable photocatalyst beads containing maghemite nanoparticles (γ-Fe(2)O(3)) in polyvinyl alcohol (PVA) polymer were prepared and used in the reduction of Cr(VI) to Cr(III) in an aqueous solution under sunlight. The unique superparamagnetic property of the photocatalyst contributed by the γ-Fe(2)O(3) and robust property of PVA polymer allow the magnetic beads to be recovered easily and reused for at least 7 times without washing. The concentration of γ-Fe(2)O(3) was varied from 8% (v/v) to 27% (v/v) and the results revealed that the beads with 8% (v/v) γ-Fe(2)O(3) exhibited the best performance where Cr(VI) was reduced to Cr(III) in only 30 min under sunlight. The use of the PVA has improved the bead properties and life cycle of beads which is in line with sustainable practices.
  15. Karami A, Syed MA, Christianus A, Willett KL, Mazzeo JR, Courtenay SC
    J. Hazard. Mater., 2012 Jul 15;223-224:84-93.
    PMID: 22608400 DOI: 10.1016/j.jhazmat.2012.04.051
    In this study we sought to optimize recovery of fluorescent aromatic compounds (FACs) from the bile of African catfish (Clarias gariepinus) injected with 10mg/kg benzo[a]pyrene (BaP). Fractions of pooled bile were hydrolyzed, combined with ten volumes of methanol, ethanol, acetonitrile, or acetone, centrifuged and supernatants were analyzed by high-performance liquid chromatography with fluorescent detection (HPLC/FL). As well, to test whether FACs were being lost in solids from the centrifugation, pellets were resuspended, hydrolyzed and mixed with six volumes of the organic solvent that produced best FAC recovery from the supernatant, and subjected to HPLC/FL. Highest FAC concentrations were obtained with 2000μl and 1250μl acetone for supernatants and resuspended pellets respectively. FACs concentrations were negatively correlated with biliary protein content but were unaffected by addition of bovine serum albumin (BSA) followed by no incubation indicating that the presence of proteins in the biliary mixture does not simply interfere with detection of FACs. In another experiment, efficiency of acetone addition was compared to two different liquid-liquid extractions (L-LEs). Acetone additions provided significantly higher biliary FACs than the L-LE methods. The new two-stage bile preparation with acetone is an efficient, inexpensive and easily performed method.
  16. Idris A, Saed K
    J. Hazard. Mater., 2002 Jul 22;93(2):201-8.
    PMID: 12117466
    Ash produced from a hospital waste incinerator was treated using a high temperature melting process at 1200 degrees C. The quality of the produced slag was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), leaching tests and sequential chemical extraction of metals. The slag contained large amounts of SiO(2,) CaO, Al(2)O(3), Sn, Ni, Cu, Ba and B. XRD analysis revealed a moderate crystal structure for the melted slag and identified the main crystals as quartz (SiO(2)), kaolinite (Al(2)Si(2)O(5)(OH)(4)), albite (NaAlSi(3)O(8)) and gibbsite (Al(OH)(3)). The observed crystal structure assists in preventing the leaching of heavy metals from the slag. Furthermore, the leaching results found the produced slag to comply with disposal limits set by the US EPA. Results from sequential chemical extraction analysis showed that metals in the slag exhibited the strongest preference to be bound to the residual fraction (stable fraction), which is known to have very low leaching characteristics. Melting was found to stabilize heavy metals in hospital waste successfully and therefore it can be an acceptable method for disposal.
  17. Alwash AH, Abdullah AZ, Ismail N
    J. Hazard. Mater., 2012 Sep 30;233-234:184-93.
    PMID: 22831996 DOI: 10.1016/j.jhazmat.2012.07.021
    A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.
  18. Pang YL, Abdullah AZ
    J. Hazard. Mater., 2012 Oct 15;235-236:326-35.
    PMID: 22939090 DOI: 10.1016/j.jhazmat.2012.08.008
    Fe-doped titanium dioxide (TiO(2)) nanotubes were prepared using sol-gel followed by hydrothermal methods and characterized using various methods. The sonocatalytic activity was evaluated based on oxidation of Rhodamine B under ultrasonic irradiation. Iron ions (Fe(3+)) might incorporate into the lattice and intercalated in the interlayer spaces of TiO(2) nanotubes. The catalysts showed narrower band gap energies, higher specific surface areas, more active surface oxygen vacancies and significantly improved sonocatalytic activity. The optimum Fe doping at Fe:Ti=0.005 showed the highest sonocatalytic activity and exceeded that of un-doped TiO(2) nanotubes by a factor of 2.3 times. It was believed that Fe(3+) doping induced the formation of new states close to the valence band and conduction bands and accelerated the separation of charge carriers. Leached Fe(3+) could catalyze Fenton-like reaction and led to an increase in the hydroxyl radical (OH) generation. Fe-doped TiO(2) nanotubes could retain high degradation efficiency even after being reused for 4 cycles with minimal loss of Fe from the surface of the catalyst.
  19. Zargar M, Ahmadinia E, Asli H, Karim MR
    J. Hazard. Mater., 2012 Sep 30;233-234:254-8.
    PMID: 22818590 DOI: 10.1016/j.jhazmat.2012.06.021
    The ageing of the bitumen during storage, mixing, transport and laying on the road, as well as in service life, are the most important problems presented by the use of bitumen in pavements. This paper investigates the possibility of using waste cooking oil (WCO), which is a waste material that pollutes landfills and rivers, as an alternative natural rejuvenating agent for aged bitumen to a condition that resembles the original bitumen. With this target, the physical and chemical properties of the original bitumen, aged bitumen and rejuvenated bitumen were measured and compared by the bitumen binder tests - softening point, penetration, Brookfield viscosity, dynamic shear rheometer and Fourier transform infrared spectroscopy. In addition, the behaviour of the WCO rejuvenated bitumen is investigated and compared with virgin bitumen after using the rolling thin film oven ageing process. In general, the results showed that using 3-4% of WCO the aged bitumen group 40/50 was rejuvenated to a condition that closely resembled the physical, rheological properties of the original bitumen (80/100), however, there was a difference in the tendency to ageing between the WCO rejuvenated bitumen and the virgin bitumen during mixing, transport and laying on the road.
  20. Nur H, Manan AF, Wei LK, Muhid MN, Hamdan H
    J. Hazard. Mater., 2005 Jan 14;117(1):35-40.
    PMID: 15621351
    The surfaces of NaY zeolite particles were modified by the alkylsilylation of n-octadecyltrichlorosilane (OTS). Two kinds of modified NaY zeolites were prepared; one with its external surface partially and the other fully covered with alkylsilyl groups. Since the size of OTS is bigger than the pore diameter of NaY, it is attached on the external surface, leaving the internal pore accessible to adsorbate molecules. As a result of alkylsilylation, the adsorption properties of these sorbents were improved. The adsorption properties of these materials were tested by their reaction in a mixture of paraquat and blue dye. The results demonstrate that the alkysilylated NaY materials are capable of simultaneous adsorption of paraquat and blue dye. Paraquat was selectively adsorbed into the internal pore of the zeolite whereas the dye on the externally attached alkylsilyl groups of the sorbent; displaying the unique bimodal amphiphilic character of the alkylsilylated NaY zeolites.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links