Displaying publications 1 - 20 of 254 in total

Abstract:
Sort:
  1. Manap N, Voulvoulis N
    Sci Total Environ, 2014 Oct 15;496:607-623.
    PMID: 25108801 DOI: 10.1016/j.scitotenv.2014.07.009
    The aim of this study was to develop a risk-based decision-making framework for the selection of sediment dredging option. Descriptions using case studies of the newly integrated, holistic and staged framework were followed. The first stage utilized the historical dredging monitoring data and the contamination level in media data into Ecological Risk Assessment phases, which have been altered for benefits in cost, time and simplicity. How Multi-Criteria Decision Analysis (MCDA) can be used to analyze and prioritize dredging areas based on environmental, socio-economic and managerial criteria was described for the next stage. The results from MCDA will be integrated into Ecological Risk Assessment to characterize the degree of contamination in the prioritized areas. The last stage was later described using these findings and analyzed using MCDA, in order to identify the best sediment dredging option, accounting for the economic, environmental and technical aspects of dredging, which is beneficial for dredging and sediment management industries.
  2. Watanabe A, Tsutsuki K, Inoue Y, Maie N, Melling L, Jaffé R
    Sci Total Environ, 2014 Sep 15;493:220-8.
    PMID: 24946034 DOI: 10.1016/j.scitotenv.2014.05.095
    As basic information for assessing reactivity and functionality of wetland-associated dissolved organic matter (DOM) based on their composition and structural properties, chemical characteristics of N in ultrafiltered DOM (UDON; >1 kD) isolated from wetland-associated rivers in three climates (cool-temperate, Hokkaido, Japan; sub-tropical, Florida, USA; tropical, Sarawak, Malaysia) were investigated. The UDON was isolated during dry and wet seasons, or during spring, summer, and autumn. The proportion of UDON present as humic substances, which was estimated as the DAX-8 adsorbed fraction, ranged from 47 to 91%, with larger values in the Sarawak than at the other sites. The yield of hydrolyzable amino acid N ranged 1.24 to 7.01 mg g(-1), which correlated positively to the total N content of UDOM and tended to be larger in the order of Florida>Hokkaido>Sarawak samples. X-ray photoelectron N1s spectra of UDON showed a strong negative correlation between the relative abundances of amide/peptide N and primary amine N. The relative abundances of amide/peptide N and primary amine N in the Sarawak samples were smaller (70-76%) and larger (20-23%) respectively compared to those (80-88% and 4-9%) in the Florida and Hokkaido samples. Assuming terminal amino groups and amide N of peptides as major constituents of primary amine N and amide/peptide N, respectively, the average molecular weight of peptides was smaller in the Sarawak samples than that in the Florida and Hokkaido samples. Seasonal variations in UDON composition were scarce in the Sarawak and Florida samples, whereas the distribution of humic substance-N and nonhumic substance-N and compositions of amino acids and N functional groups showed a clear seasonality in the Hokkaido samples. While aromatic N increased from spring to autumn, contributions from fresh proteinaceous materials were also enhanced during autumn, resulting in the highest N content of UDOM for this season.
  3. Ho YB, Zakaria MP, Latif PA, Saari N
    Sci Total Environ, 2014 Aug 1;488-489:261-7.
    PMID: 24836135 DOI: 10.1016/j.scitotenv.2014.04.109
    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices.
  4. Latif MT, Dominick D, Ahamad F, Khan MF, Juneng L, Hamzah FM, et al.
    Sci Total Environ, 2014 Jun 1;482-483:336-48.
    PMID: 24662202 DOI: 10.1016/j.scitotenv.2014.02.132
    Rural background stations provide insight into seasonal variations in pollutant concentrations and allow for comparisons to be made with stations closer to anthropogenic emissions. In Malaysia, the designated background station is located in Jerantut, Pahang. A fifteen-year data set focusing on ten major air pollutants and four meteorological variables from this station were analysed. Diurnal, monthly and yearly pollutant concentrations were derived from hourly continuous monitoring data. Statistical methods employed included principal component regression (PCR) and sensitivity analysis. Although only one of the yearly concentrations of the pollutants studied exceeded national and World Health Organisation (WHO) guideline standards, namely PM10, seven of the pollutants (NO, NO2, NOx, O3, PM10, THC and CH4) showed a positive upward trend over the 15-year period. High concentrations of PM10 were recorded during severe haze episodes in this region. Whilst, monthly concentrations of most air pollutants, such as: PM10, O3, NOx, NO2, CO and NmHC were recorded at higher concentrations between June and September, during the southwest monsoon. Such results correspond with the mid-range transport of pollutants from more urbanised and industrial areas. Diurnal patterns, rationed between major air pollutants and sensitivity analysis, indicate the influence of local traffic emissions on air quality at the Jerantut background station. Although the pollutant concentrations have not shown a rapid increase, an alternative background station will need to be assigned within the next decade if development projects in the surrounding area are not halted.
  5. Khoshnevisan B, Rajaeifar MA, Clark S, Shamahirband S, Anuar NB, Mohd Shuib NL, et al.
    Sci Total Environ, 2014 May 15;481:242-51.
    PMID: 24602908 DOI: 10.1016/j.scitotenv.2014.02.052
    In this study the environmental impact of consolidated rice farms (CF) - farms which have been integrated to increase the mechanization index - and traditional farms (TF) - small farms with lower mechanization index - in Guilan Province, Iran, were evaluated and compared using Life cycle assessment (LCA) methodology and adaptive neuro-fuzzy inference system (ANFIS). Foreground data were collected from farmers using face-to-face questionnaires and background information about production process and inventory data was taken from the EcoInvent®2.0 database. The system boundary was confined to within the farm gate (cradle to farm gate) and two functional units (land and mass based) were chosen. The study also included a comparison of the input-output energy flows of the farms. The results revealed that the average amount of energy consumed by the CFs was 57 GJ compared to 74.2 GJ for the TFs. The energy ratios for CFs and TFs were 1.6 and 0.9, respectively. The LCA results indicated that CFs produced fewer environmental burdens per ton of produced rice. When compared according to the land-based FU the same results were obtained. This indicates that the differences between the two types of farms were not caused by a difference in their production level, but rather by improved management on the CFs. The analysis also showed that electricity accounted for the greatest share of the impact for both types of farms, followed by P-based and N-based chemical fertilizers. These findings suggest that the CFs had superior overall environmental performance compared to the TFs in the study area. The performance metrics of the model based on ANFIS show that it can be used to predict the environmental burdens of rice production with high accuracy and minimal error.
  6. Chen GX, He WW, Wang Y, Zou YD, Liang JB, Liao XD, et al.
    Sci Total Environ, 2014 May 1;479-480:241-6.
    PMID: 24561929 DOI: 10.1016/j.scitotenv.2014.01.124
    The degradation behavior of veterinary antibiotics in soil is commonly studied using the following methods of adding antibiotics to the soil: (i) adding manure collected from animals fed with a diet containing antibiotics, (ii) adding antibiotic-free animal manure spiked with antibiotics and (iii) directly adding antibiotics. No research simultaneously comparing different antibiotic addition methods was found. Oxytetracycline (OTC) was used as a model antibiotic to compare the effect of the three commonly used antibiotic addition methods on OTC degradation behavior in soil. The three treatment methods have similar trends, though OTC degradation half-lives show the following significant differences (P<0.05): manure from swine fed OTC (treatment A)
  7. Zabed H, Suely A, Faruq G, Sahu JN
    Sci Total Environ, 2014 Feb 15;472:363-9.
    PMID: 24295752 DOI: 10.1016/j.scitotenv.2013.11.051
    A sacred ritual well with continuously discharging of methane gas through its water body was studied for physicochemical and microbiological quality in three seasons and during ritual mass bathing. Most of the physicochemical parameters showed significant seasonal variations (P<0.05) and a sharp fluctuation during mass bathing. Dissolved oxygen (DO) was found negatively correlated with temperature (r=-0.384, P<0.05), biochemical oxygen demand (BOD) (r=-0.58, P<0.001) and ammonia (r=-0.738, P<0.001), while BOD showed positive correlation with chemical oxygen demand (COD) (r=0.762, P<0.001) and ammonia (r=0.83, P<0.001). Simple regression analysis also yielded significant linear relationship in DO vs. temperature (r(2)=0.147, P<0.05), DO vs. ammonia (r(2)=0.544, P<0.001) and BOD vs. DO (r(2)=0.336, P<0.001). A total of eight microbial indicators were studied and found that all of them increased unusually during mass bathing comparing with their respective seasonal values. Total coliforms (TC) were found positively correlated with fecal coliforms (FC) (r=0.971), FC with Escherichia coli (EC) (r=0.952), EC with intestinal enterococci (IE) (r=0.921), fecal streptococci (FS) with IE (r=0.953) and Staphylococcus aureus (SA) with Pseudomonas aeruginosa (PA) (r=0.946), which were significant at P<0.001. Some regression models showed significant linear relationship at P<0.001 with r(2) value of 0.943 for FC vs. TC, 0.907 for EC vs. FC, 0.869 for FS vs. FC, 0.848 for IE vs. EC and 0.909 for IE vs. FS. The overall results found in this study revealed that well water is suitable for bathing purpose but the religious activity considerably worsen its quality.
  8. Kwan CS, Takada H, Boonyatumanond R, Kato Y, Mizukawa K, Ito M, et al.
    Sci Total Environ, 2014 Feb 1;470-471:427-37.
    PMID: 24140702 DOI: 10.1016/j.scitotenv.2013.09.076
    Historical trends of the accumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in a typical tropical Asian environment were investigated using radio-dated sediment cores from Manila Bay, the Philippines and from the upper Gulf of Thailand. Vertical profiles indicated earlier usage of PCBs than of PBDEs which coincided with their industrial production. The increasing concentrations of total PBDEs and PCBs toward the surface suggested an increased consumption of PBDEs; and possible leakage of PCBs from old machineries into the aquatic environment in recent years. Current input of PCBs to the catchment of Manila Bay was supported by the analyses of air samples and plastic resin pellets. The vertical profiles of total PBDEs in the cores (i.e., rapidly increasing concentrations corresponding to the mid-1980s until mid-1990s, followed by a decrease until the early 2000s, and increasing again toward the surface) likely corresponded to the rapid economic growth in Asia in the 1990s, the Asian financial crisis in 1997, and the economic recovery since early 2000s. BDE-209 was predominant especially on the surface layers. BDEs 47 and 99 generally decreased toward the surface, reflecting the phase-out of the technical penta-PBDE products and the regulation by the Stockholm Convention in recent years. Increasing ratios of BDE-202/209, 206/209, 207/209 and decreasing % of BDE-209 down the core layers may provide evidence for the anaerobic debromination of BDE-209 in the sediment cores. Inventories in ng/cm(2) of total PCBs were higher than total PBDEs (92 vs. 34 and 47 vs. 11 in the Philippines; 47 vs. 33 in Thailand). However, the doubling times indicated faster accumulation of total PBDEs (6-7 years) and BDE-209 (6-7.5 years) than of PCBs (8-11 years). Furthermore, the temporal increase in BDE-209 was comparable to or faster than those reported in other water bodies around the world.
  9. Padmanabhan E, Eswaran H, Reich PF
    Sci Total Environ, 2013 Nov 1;465:196-204.
    PMID: 23541401 DOI: 10.1016/j.scitotenv.2013.03.024
    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner.
  10. Mirsadeghi SA, Zakaria MP, Yap CK, Gobas F
    Sci Total Environ, 2013 Jun 1;454-455:584-97.
    PMID: 23583984 DOI: 10.1016/j.scitotenv.2013.03.001
    The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles are a potential hazard for both blood cockles and their consumers.
  11. Hashim JH, Radzi RS, Aljunid SM, Nur AM, Ismail A, Baguma D, et al.
    Sci Total Environ, 2013 Oct 1;463-464:1210-6.
    PMID: 23759330 DOI: 10.1016/j.scitotenv.2013.04.084
    Natural, inorganic arsenic contamination of groundwater threatens the health of more than 100 million people worldwide, including residents of the densely populated river deltas of South and Southeast Asia. Contaminated groundwater from tube wells in Cambodia was discovered in 2001 leading to the detection of the first cases of arsenicosis in 2006. The most affected area was the Kandal Province. The main objective of this study was to determine the prevalence of arsenicosis in Cambodia based on acceptable criteria, and to investigate the use of hair arsenic as a biomarker not only for arsenicosis-related signs but also for associated symptoms. A cross-sectional epidemiological study of 616 respondents from 3 purposely selected provinces within the Mekong River basin of Cambodia was conducted. The Kandal Province was chosen as a high arsenic-contaminated area, while the Kratie Province and Kampong Cham Province were chosen as moderate and low arsenic-contaminated areas, respectively. The most prevalent sign of arsenicosis was hypomelanosis with a prevalence of 14.5% among all respondents and 32.4% among respondents with a hair arsenic level of ≥1 μg/g. This was followed by hyperkeratosis, hyperpigmentation and mee's lines. Results also suggest a 1.0 μg/g hair arsenic level to be a practical cut off point for an indication of an arsenic contaminated individual. This hair arsenic level, together with the presence of one or more of the classical signs of arsenicosis, seems to be a practical criteria for a confirmed diagnosis. Based on these criteria, the overall prevalence of arsenicosis for all provinces was found to be 16.1%, with Kandal Province recording the highest prevalence of 35.5%. This prevalence is comparatively high when compared to that of other affected countries. The association between arsenicosis and the use of Chinese traditional medicine also needs further investigation.
  12. Shimizu A, Takada H, Koike T, Takeshita A, Saha M, Rinawati, et al.
    Sci Total Environ, 2013 May 1;452-453:108-15.
    PMID: 23500404 DOI: 10.1016/j.scitotenv.2013.02.027
    Seven sulfonamides, trimethoprim, five macrolides, lincomycin and three tetracyclines were measured in 150 water samples of sewage, livestock and aquaculture wastewater, and river and coastal waters, in five tropical Asian countries. The sum of the concentrations of the target antibiotics in sewage and heavily sewage-impacted waters were at sub- to low-ppb levels. The most abundant antibiotic was sulfamethoxazole (SMX), followed by lincomycin and sulfathiazole. The average concentration of SMX in sewage or heavily sewage-impacted waters was 1720 ng/L in Vietnam (Hanoi, Ho Chi Minh, Can Tho; n=15), 802ng/L in the Philippines (Manila; n=4), 538 ng/L in India (Kolkata; n=4), 282 ng/L in Indonesia (Jakarta; n=10), and 76 ng/L in Malaysia (Kuala Lumpur; n=6). These concentrations were higher than those in Japan, China, Europe, the US and Canada. A predominance of sulfonamides, especially SMX, is notable in these tropical countries. The higher average concentrations, and the predominance of SMX, can be ascribed to the lower cost of the antibiotics. Both the concentration and composition of antibiotics in livestock and aquaculture wastewater varied widely. In many cases, sulfamethazine (SMT), oxytetracycline (OTC), lincomycin, and SMX were predominant in livestock and aquaculture wastewater. Both human and animal antibiotics were widely distributed in the respective receiving waters (i.e., the Mekong River and Manila Bay). SMT/SMX ratios indicate a significant contribution from livestock wastewater to the Mekong River and nearby canals, with an estimated ~10% of river water SMX derived from such wastewater. Mass flow calculations estimate that 12 tons of SMX is discharged annually from the Mekong River into the South China Sea. Riverine inputs of antibiotics may significantly increase the concentration of such antibiotics in the coastal waters.
  13. Ikonomopoulou MP, Olszowy H, Francis R, Ibrahim K, Whittier J
    Sci Total Environ, 2013 Apr 15;450-451:301-6.
    PMID: 23500829 DOI: 10.1016/j.scitotenv.2013.02.031
    A variety of trace metals were measured in the egg contents of three clutches of Chelonia mydas collected from Kuala Terengganu state in Peninsular Malaysia. We quantified Mn, Cu, Zn, Se (essential trace metals) and As (anthropogenic pollutant) at several developmental stages obtained by incubating eggs at two different temperatures (27 °C and 31 °C). The incubation temperatures were chosen because they produce predominantly male or predominantly female hatchlings, respectively. The eggs were removed from the sand and washed before being placed in incubators, to ensure that the only possible source of the detected metals was maternal transfer. Other metals: Mo, Co, Ni, Cd, Sn, Sb, Hg, Tl and Pb (all non-essential metals) were detected at concentrations below the lower limit of quantitation (LLOQ). Trace metal concentrations, particularly [Zn], increased during development, other metals (Cu, As, Se and Cr) accumulated to a lesser degree than zinc but no significant differences were observed between the incubation temperatures at any stage of incubation. To date, only a few studies on trace metals in turtle embryos and hatchlings have been reported; this study will provide basic knowledge on the accumulation of trace metals during development at two different incubation temperatures.
  14. Isa NM, Aris AZ, Sulaiman WN
    Sci Total Environ, 2012 Nov 1;438:414-25.
    PMID: 23022725 DOI: 10.1016/j.scitotenv.2012.08.069
    Small islands are susceptible to anthropogenic and natural activities, especially in respect of their freshwater supply. The freshwater supply in small islands may be threatened by the encroachment of seawater into freshwater aquifers, usually caused by over pumping. This study focused on the hydrochemistry of the Kapas Island aquifer, which controls the groundwater composition. Groundwater samples were taken from six constructed boreholes for the analysis and measurement of its in-situ and major ions. The experimental results show a positive and significant correlation between Na-Cl (r=0.907; p<0.01), which can be defined as the effect of salinization. The mechanisms involved in groundwater chemistry changes were ion exchange and mineralization. These processes can be demonstrated using Piper's diagram in which the water type has shifted into a Na-HCO(3) water type from a Ca-HCO(3) water type. Saturation indices have been calculated in order to determine the saturation condition related to dissolution or the precipitation state of the aquifer bedrock. About 76% of collected data (n=108) were found to be in the dissolution process of carbonate minerals. Moreover, the correlation between total CEC and Ca shows a positive and strong relationship (r=0.995; p<0.01). This indicates that the major mineral component in Kapas Island is Ca ion, which contributes to the groundwater chemical composition. The output of this research explains the chemical mechanism attributed to the groundwater condition of the Kapas Island aquifer.
  15. Santhi VA, Sakai N, Ahmad ED, Mustafa AM
    Sci Total Environ, 2012 Jun 15;427-428:332-8.
    PMID: 22578698 DOI: 10.1016/j.scitotenv.2012.04.041
    This study investigated the level of bisphenol A (BPA) in surface water used as potable water, drinking water (tap and bottled mineral water) and human plasma in the Langat River basin, Malaysia. BPA was present in 93% of the surface water samples at levels ranging from below limit of quantification (LOQ; 1.3 ng/L) to 215 ng/L while six fold higher levels were detected in samples collected near industrial and municipal sewage treatment plant outlets. Low levels of BPA were detected in most of the drinking water samples. BPA in tap water ranged from 3.5 to 59.8 ng/L with the highest levels detected in samples collected from taps connected to PVC pipes and water filter devices. Bottled mineral water had lower levels of BPA (3.3±2.6 ng/L) although samples stored in poor storage condition had significantly higher levels (11.3±5.3 ng/L). Meanwhile, only 17% of the plasma samples had detectable levels of BPA ranging from 0.81 to 3.65 ng/mL. The study shows that BPA is a ubiquitous contaminant in surface, tap and bottled mineral water. However, exposure to BPA from drinking water is very low and is less than 0.01% of the tolerable daily intake (TDI).
  16. Jinggut T, Yule CM, Boyero L
    Sci Total Environ, 2012 Oct 15;437:83-90.
    PMID: 22922133 DOI: 10.1016/j.scitotenv.2012.07.062
    In common with most of Borneo, the Bakun region of Sarawak is currently subject to heavy deforestation mainly due to logging and, to a lesser extent, traditional slash-and-burn farming practices. This has the potential to affect stream ecosystems, which are integrators of environmental change in the surrounding terrestrial landscape. This study evaluated the effects of both types of deforestation by using functional and structural indicators (leaf litter decomposition rates and associated detritivores or 'shredders', respectively) to compare a fundamental ecosystem process, leaf litter decomposition, within logged, farmed and pristine streams. Slash-and-burn agricultural practices increased the overall rate of decomposition despite a decrease in shredder species richness (but not shredder abundance) due to increased microbial decomposition. In contrast, decomposition by microbes and invertebrates was slowed down in the logged streams, where shredders were less abundant and less species rich. This study suggests that shredder communities are less affected by traditional agricultural farming practices, while modern mechanized deforestation has an adverse effect on both shredder communities and leaf breakdown.
  17. Venny, Gan S, Ng HK
    Sci Total Environ, 2012 Mar 1;419:240-9.
    PMID: 22285087 DOI: 10.1016/j.scitotenv.2011.12.053
    This work focuses on the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil using modified Fenton (MF) treatment coupled with a novel chelating agent (CA), a more effective technique among currently available technologies. The performance of MF treatment to promote PAH oxidation in artificially contaminated soil was investigated in a packed column with a hydrogen peroxide (H(2)O(2)) delivery system simulating in-situ soil flushing which is more representative of field conditions. The effectiveness of process parameters H(2)O(2)/soil, Fe(3+)/soil, CA/soil weight ratios and reaction time were studied using a 2(4) three level factorial design experiments. An optimised operating condition of the MF treatment was observed at H(2)O(2)/soil 0.05, Fe(3+)/soil 0.025, CA/soil 0.04 and 3h reaction time with 79.42% and 68.08% PAH removals attainable for the upper and lower parts of the soil column respectively. The effects of natural attenuation and biostimulation process as post-treatment in the remediation of the PAH-contaminated soil were also studied. In all cases, 3-aromatic ring PAH (phenanthrene) was more readily degraded than 4-aromatic ring PAH (fluoranthene) regardless of the bioremediation approach. The results revealed that both natural attenuation and biostimulation could offer remarkable enhancement of up to 6.34% and 9.38% in PAH removals respectively after 8 weeks of incubation period. Overall, the results demonstrated that combined inorganic CA-enhanced MF treatment and bioremediation serves as a suitable strategy to enhance soil quality particularly to remediate soils heavily contaminated with mixtures of PAHs.
  18. Lai SO, Huang J, Hopke PK, Holsen TM
    Sci Total Environ, 2011 Mar 1;409(7):1320-7.
    PMID: 21257194 DOI: 10.1016/j.scitotenv.2010.12.032
    In this project, several surrogate surfaces designed to directly measure Hg dry deposition were investigated. Static water surrogate surfaces (SWSS) containing deionized (DI), acidified water, or salt solutions, and a knife-edge surrogate surface (KSS) using quartz fiber filters (QFF), KCl-coated QFF and gold-coated QFF were evaluated as a means to directly measure mercury (Hg) dry deposition. The SWSS was hypothesized to collect deposited elemental mercury (Hg⁰), reactive gaseous/oxidized mercury (RGM), and mercury associated with particulate matter (Hg(p)) while the QFF, KCl-coated QFF, and gold-coated QFF on the KSS were hypothesized to collect Hg(p), RGM+Hg(p), and Hg⁰+RGM+Hg(p), respectively. The Hg flux measured by the DI water was significantly smaller than that captured by the acidified water, probably because Hg⁰ was oxidized to Hg²+ which stabilized the deposited Hg and decreased mass transfer resistance. Acidified BrCl, which efficiently oxidizes Hg⁰, captured significantly more Hg than other solutions. However, of all collection media, gold-coated QFFs captured 6 to 100 times greater Hg mass than the other surfaces, probably because there is no surface resistance for Hg⁰ deposition to gold surfaces. In addition, the Hg⁰ concentration is usually 100-1000 times higher than RGM and Hg(p). For all other media, co-located samples were not significantly different, and the combination of daytime plus nighttime results were comparable to 24-h samples, implying that Hg⁰, RGM and Hg(p) were not released after they deposited nor did the surfaces reach equilibrium with the atmosphere. Based on measured Hg ambient air concentrations and fluxes, dry deposition velocities of RGM and Hg⁰ to DI water and other surfaces were 5.6±5.4 and 0.005-0.68 cm s⁻¹ in this study, respectively. These results suggest surrogate surfaces can be used to measure Hg dry deposition; however, extrapolating the results to natural surface can be challenging.
  19. Zakaria NA, Azamathulla HM, Chang CK, Ghani AA
    Sci Total Environ, 2010 Oct 1;408(21):5078-85.
    PMID: 20708217 DOI: 10.1016/j.scitotenv.2010.07.048
    This paper presents Gene-Expression Programming (GEP), which is an extension to the genetic programming (GP) approach to predict the total bed material load for three Malaysian rivers. The GEP is employed without any restriction to an extensive database compiled from measurements in the Muda, Langat, and Kurau rivers. The GEP approach demonstrated a superior performance compared to other traditional sediment load methods. The coefficient of determination, R(2) (=0.97) and the mean square error, MSE (=0.057) of the GEP method are higher than those of the traditional method. The performance of the GEP method demonstrates its predictive capability and the possibility of the generalization of the model to nonlinear problems for river engineering applications.
  20. Tee HC, Seng CE, Noor AM, Lim PE
    Sci Total Environ, 2009 May 15;407(11):3563-71.
    PMID: 19272632 DOI: 10.1016/j.scitotenv.2009.02.017
    This study aims to compare the performance of planted and unplanted constructed wetlands with gravel- and raw rice husk-based media for phenol and nitrogen removal. Four laboratory-scale horizontal subsurface-flow constructed wetland units, two of which planted with cattail (Typha latifolia) were operated outdoors. The units were operated at a nominal hydraulic retention time of 7 days and fed with domestic wastewater spiked with phenol concentration at 300 mg/L for 74 days and then at 500 mg/L for 198 days. The results show that planted wetland units performed better than the unplanted ones in the removal and mineralization of phenol. This was explained by the creation of more micro-aerobic zones in the root zone of the wetland plants which allow a faster rate of phenol biodegradation, and the phenol uptake by plants. The better performance of the rice husk-based planted wetland compared to that of the gravel-based planted wetland in phenol removal could be explained by the observation that more rhizomes were established in the rice husk-based wetland unit thus creating more micro-aerobic zones for phenol degradation. The role of rice husk as an adsorbent in phenol removal was considered not of importance.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links