Displaying publications 1 - 20 of 880 in total

Abstract:
Sort:
  1. Muhamad Khair NK, Lee KE, Mokhtar M
    J Environ Manage, 2021 Jul 01;289:112491.
    PMID: 33813302 DOI: 10.1016/j.jenvman.2021.112491
    Community-based monitoring is increasingly recognised as one solution to sustainable environmental management. However, the development of community-based monitoring has led to confusion or misconceptions regarding other similar initiatives. Through a review of the characteristics and synthesising criteria of effective community-based monitoring, this article addresses how to distinguish community-based monitoring from other forms of community engagement research. A review of relevant community-based monitoring literature identifies the characteristics of and knowledge gaps in procedures and governance structures. Additionally, evidence of common benefits, challenges and lessons learned for successful community-based monitoring are deliberated. As an outcome of the review, the article synthesises a set of community-based monitoring criteria as follows: (1) efficacy of initiatives, (2) technicality aspects, (3) feedback mechanisms and (4) sustainability. These synthesised criteria will be instrumental in designing customised community-based monitoring initiatives for environmental sustainability.
    Matched MeSH terms: Environmental Monitoring*
  2. Nurulnadia MY, Zahid BM, Yusof KMKK, Minhat FI, Uno S, Hamid HIA
    Environ Monit Assess, 2023 Feb 02;195(3):355.
    PMID: 36732460 DOI: 10.1007/s10661-023-10998-0
    Sediment is the ultimate reservoir of effluent from landmasses. This includes octylphenol (OP) and nonylphenol (NP), two chemical compounds which are known with the ability to disrupt the normal functions of hormones in the organism. To our knowledge, no study of these compounds in the marine sediment of Malaysia has been published to date. Hence, this study presents the level of OP and NP in the sediment of the South China Sea and Malacca Strait, Malaysia. The extraction of compounds was done using the liquid-liquid extraction method and followed by clean-up using solid-phase extraction cartridges. The range of OP in Malacca Strait (1.00-27.16 ng/g dw) was greater than in the South China Sea (5.12-14.16 ng/g dw) whereas a similar range of NP was found in the South China Sea (1.32-23.76 ng/g dw) and Malacca Strait (0.79-27.59 ng/g dw). The concentration of both compounds was consistently high near Redang Island (E2A) and Penang (W32 and W43) suggesting continuous input of these chemicals from this nearby land. Risk quotient (RQ) values of OP showed the potential risk to benthic communities in 4/7 and 21/47 sampling points of the respective South China Sea and Malacca Strait. Both water bodies are located far from the wastewater effluent and yet able to retain these chemicals in their sediment. This suggests that the wastewater treatment system as well as dilution effects do not prevent these chemicals to be ended up in the marine environment.
    Matched MeSH terms: Environmental Monitoring
  3. Alyousifi Y, Ibrahim K, Kang W, Zin WZW
    Environ Monit Assess, 2020 Oct 21;192(11):719.
    PMID: 33083907 DOI: 10.1007/s10661-020-08666-8
    An environmental problem which is of concern across the globe nowadays is air pollution. The extent of air pollution is often studied based on data on the observed level of air pollution. Although the analysis of air pollution data that is available in the literature is numerous, studies on the dynamics of air pollution with the allowance for spatial interaction effects through the use of the Markov chain model are very limited. Accordingly, this study aims to explore the potential impact of spatial dependence over time and space on the distribution of air pollution based on the spatial Markov chain (SMC) model using the longitudinal air pollution index (API) data. This SMC model is pertinent to be applied since the daily data of API from 2012 to 2014 that have been gathered from 37 different air quality stations in Peninsular Malaysia is found to exhibit the property of spatial autocorrelation. Based on the spatial transition probability matrices found from the SMC model, specific characteristics of air pollution are studied in the regional context. These characteristics are the long-run proportion and the mean first passage time for each state of air pollution. It is found that the probability for a particular station's state to remain good is 0.814 if its neighbors are in a good state of air pollution and 0.7082 if its neighbors are in a moderate state. For a particular station having neighbors in a good state of air pollution, the proportion of time for it to continue being in a good state is 0.6. This proportion reduces to 0.4, 0.01, and 0 for the cell of moderate, unhealthy, and very unhealthy states, respectively. In addition, there exists a significant spatial dependence of API, indicating that air pollution for a particular station is dependent on the states of the neighboring stations.
    Matched MeSH terms: Environmental Monitoring*
  4. Fauziah SH, Rizman-Idid M, Cheah W, Loh KH, Sharma S, M R N, et al.
    Mar Pollut Bull, 2021 Jun;167:112258.
    PMID: 33839567 DOI: 10.1016/j.marpolbul.2021.112258
    The launch of Roadmap towards Zero Single-use Plastics in 2018 demands baseline data on the management of marine debris in Malaysia. In 2021, Malaysia is placed 28th top plastic polluter in the world with plastic consumption at 56 kg/capita/year, therefore data on mismanaged plastic is imperative. This paper reviews the abundance and distribution of marine debris in selected Malaysian beaches over the last decade (2010-2020) and discusses issue on its management. Plastic debris on beaches in Malaysia, was reported to range from 64 items/m2, to as high as 1930 items/m2, contributing 30-45% of total waste collected. Plastics film was the most dominant, mainly originated from packaging materials. Therefore, appropriate action including improved marine waste management system is crucial to tackle the problem, together with effective governance mechanisms. Various suggestions were proposed based on the statistical-environmental data to reduce the occurrence of marine debris in the country.
    Matched MeSH terms: Environmental Monitoring*
  5. Azman MA, Ramli MZ, Che Othman SF, Shafiee SA
    Mar Pollut Bull, 2021 Sep;170:112630.
    PMID: 34146861 DOI: 10.1016/j.marpolbul.2021.112630
    This study investigated the accumulation of debris at four sites, namely, Gebeng, Batu Hitam, Cherok Paloh, and Air Leleh, along the Pahang coastline, Peninsular Malaysia from March 2019 to February 2020. Plastic was the dominant debris (86.1%) and followed by cloth/fabric-based debris (6.0%), processed lumber debris (3.3%), rubber (2.7%), glass (1.5%), and metal (0.4%). The land-based debris (82.0%) was the major source of the deposition of marine waste. A statistically significant relationship was found between the seasonal variation and marine debris density in tidal and seasonal current along the Pahang coastline. In general, the Northeast Monsoon season had a higher amount of debris than the Southwest Monsoon season.
    Matched MeSH terms: Environmental Monitoring*
  6. Heng PL, Lim JH, Lee CW
    Environ Monit Assess, 2017 Mar;189(3):117.
    PMID: 28220442 DOI: 10.1007/s10661-017-5838-1
    Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3-2.3 × 10(5) cell ml(-1)) was always higher than at Port Klang (0.3-7.1 × 10(4) cell ml(-1)) (p  0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi - 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p  0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.
    Matched MeSH terms: Environmental Monitoring*
  7. Wu Y, Rahman RA, Yu Q
    Environ Monit Assess, 2022 Feb 08;194(3):154.
    PMID: 35132444 DOI: 10.1007/s10661-022-09817-9
    Sustainable agriculture is important for preserving environmental health and simultaneously gaining economic profits while maintaining social and economic equity. One way to evaluate sustainable agriculture is by studying agricultural eco-efficiency (AEE). Hence, this study constructed a data-driven method to evaluate and optimize AEE with the aim of providing a basis for improving the sustainable development of regional agriculture. Sixteen cities in Anhui Province, China, were considered in the study, and the variables used were agricultural resource inputs, environmental pollution, and agricultural economic development. Agricultural non-point source pollution (NPSP) emissions were considered the undesired output to build an AEE evaluation index system. Furthermore, a data envelopment analysis (DEA) model was established to analyse AEE from the static and dynamic perspectives. The spatial development and the temporal and spatial characteristics of AEE were also analysed. In addition, we applied a random effect (RE) panel Tobit model to quantitatively analyse the influencing factors of AEE from the input perspective and then proposed reasonable suggestions for improving the sustainable development of regional agriculture. Our findings show that the overall agricultural development in the 16 cities in Anhui Province has been continuously improving, even though there is an agglomeration of spatial development in some regions. In conclusion, this study provides suggestions and references for policy makers and agricultural practitioners regarding how to improve regional AEE and promote the sustainable development of the regional agricultural economy.
    Matched MeSH terms: Environmental Monitoring*
  8. Palanichamy N, Haw SC, S S, Murugan R, Govindasamy K
    F1000Res, 2022;11:406.
    PMID: 36531254 DOI: 10.12688/f1000research.73166.1
    Introduction Pollution of air in urban cities across the world has been steadily increasing in recent years. An increasing trend in particulate matter, PM 2.5, is a threat because it can lead to uncontrollable consequences like worsening of asthma and cardiovascular disease. The metric used to measure air quality is the air pollutant index (API). In Malaysia, machine learning (ML) techniques for PM 2.5 have received less attention as the concentration is on predicting other air pollutants. To fill the research gap, this study focuses on correctly predicting PM 2.5 concentrations in the smart cities of Malaysia by comparing supervised ML techniques, which helps to mitigate its adverse effects. Methods In this paper, ML models for forecasting PM 2.5 concentrations were investigated on Malaysian air quality data sets from 2017 to 2018. The dataset was preprocessed by data cleaning and a normalization process. Next, it was reduced into an informative dataset with location and time factors in the feature extraction process. The dataset was fed into three supervised ML classifiers, which include random forest (RF), artificial neural network (ANN) and long short-term memory (LSTM). Finally, their output was evaluated using the confusion matrix and compared to identify the best model for the accurate prediction of PM 2.5. Results Overall, the experimental result shows an accuracy of 97.7% was obtained by the RF model in comparison with the accuracy of ANN (61.14%) and LSTM (61.77%) in predicting PM 2.5. Discussion RF performed well when compared with ANN and LSTM for the given data with minimum features. RF was able to reach good accuracy as the model learns from the random samples by using decision tree with the maximum vote on the predictions.
    Matched MeSH terms: Environmental Monitoring/methods
  9. Menon V, Sharma S, Gupta S, Ghosal A, Nadda AK, Jose R, et al.
    Chemosphere, 2023 Mar;317:137848.
    PMID: 36642147 DOI: 10.1016/j.chemosphere.2023.137848
    Synthetic plastics, which are lightweight, durable, elastic, mouldable, cheap, and hydrophobic, were originally invented for human convenience. However, their non-biodegradability and continuous accumulation at an alarming rate as well as subsequent conversion into micro/nano plastic scale structures via mechanical and physio-chemical degradation pose significant threats to living beings, organisms, and the environment. Various minuscule forms of plastics detected in water, soil, and air are making their passage into living cells. High temperature and ambient humidity increase the degradation potential of plastic polymers photo-catalytically under sunlight or UV-B radiations. Microplastics (MPs) of polyethylene terephthalate, polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been detected in bottled water. These microplastics are entering into the food chain cycle, causing serious harm to all living organisms. MPs entering into the food chain are usually inert in nature, possessing different sizes and shapes. Once they enter a cell or tissue, it causes mechanical damage, induces inflammation, disturbs metabolism, and even lead to necrosis. Various generation routes, types, impacts, identification, and treatment of microplastics entering the water bodies and getting associated with various pollutants are discussed in this review. It emphasizes potential detection techniques like pyrolysis, gas chromatography-mass spectrometry (GC-MS), micro-Raman spectroscopy, and fourier transform infrared spectroscopy (FT IR) spectroscopy for microplastics from water samples.
    Matched MeSH terms: Environmental Monitoring/methods
  10. Bar AR, Mondal I, Das S, Biswas B, Samanta S, Jose F, et al.
    Environ Monit Assess, 2023 Jul 20;195(8):975.
    PMID: 37474709 DOI: 10.1007/s10661-023-11552-8
    The study explores the spatio-temporal variation of water quality parameters in the Hooghly estuary, which is considered an ecologically-stressed shallow estuary and a major distributary for the Ganges River. The estimated parameters are chlorophyll-a, total suspended matter (TSM), and chromophoric dissolved organic matter (CDOM). The Sentinel-3 OLCI remote sensing imageries were analyzed for the duration of October 2018 to February 2019. We observed that the water quality of the Hooghly estuaries is comparatively low-oxygenated, mesotrophic, and phosphate-limited. Ongoing channel dredging for maintaining shipping channel depth keeps the TSM in the estuary at an elevated level, with the highest amount of TSM observed during March of 2019 (41.59g m-3) at station A, upstream point. Since the pre-monsoon season, TSM data shows a decreasing trend towards the mouth of the estuary. Chl-a concentration is higher during pre-monsoon than monsoon and post-monsoon periods, with the highest value observed in April at 1.09 mg m-3 in station D during the pre-monsoon period. The CDOM concentration was high in the middle section (January-February) and gradually decreased towards the estuary's head and mouth. The highest CDOM was found in February at locations C and D during the pre-monsoon period. Every station shows a significant correlation among CDOM, TSM, and Chl-a measured parameters. Based on our satellite data analysis, it is recommended that SNAP C2RCC be regionally used for TSM, Chl-a, and CDOM for water quality product retrieval and in various algorithms for the Hooghly estuary monitoring.
    Matched MeSH terms: Environmental Monitoring*
  11. Alkhadher SAA, Suratman S, Mohd Sallan MIB
    J Environ Manage, 2023 Nov 01;345:118464.
    PMID: 37454570 DOI: 10.1016/j.jenvman.2023.118464
    The spatial and temporal distributions of trace metals in dissolved forms mainly result from anthropogenic and lithogenic contributions. Surface water samples (∼0.5 m) were collected monthly at respective stations from Setiu Wetland. In this study, the behaviour of trace metals in the dissolved phases along the water column from sampling sites in the Setiu Wetland, Malaysia was investigated. In addition, dissolved organic carbon (DOC) and physical parameters such as salinity, temperature, pH and dissolved oxygen (DO) of the surface water were measured in order to evaluate the relationship between trace metals fractionation with different water quality parameters. Size fractionation study of dissolved trace metals using ultrafiltration technique were also carried out and analysed using inductively coupled plasma mass spectrometry (ICP-MS). Correlation of trace metals with other measured parameters was made to furthermore understand the dynamics of trace metals and its fractionated components in this area. The concentration of dissolved trace metals was in the range of 0.001-0.16 μg/L for Cd, 0.12-2.81 μg/L for Cu, 0.01-1.84 μg/L for Pb, 3-17 μg/L for Fe and 1-34 μg/L for Zn, suggesting the input of anthropogenic sources for trace metals such as municipal, industrial, agricultural and domestic discharge. The periodic monitoring and evaluation of trace metals in wetlands and protected tropical areas is highly recommended.
    Matched MeSH terms: Environmental Monitoring/methods
  12. Upadhyay DR, Koirala G, Shah BR, Tajudin SM, Khanal R
    Environ Monit Assess, 2024 Jan 23;196(2):190.
    PMID: 38261087 DOI: 10.1007/s10661-023-12284-5
    Soil samples from vegetable farmland in densely populated wards of Nepal were analyzed for natural radionuclide levels, employing a NaI(Tl) 3" [Formula: see text] 3" gamma detector. The study aimed to evaluate the causes of radiation risk, attributing it to soil contamination resulting from the rapid urbanization and concretization that followed the earthquake in 2015. The activity concentration of radium-226, thorium-232, and potassium-40 and the ranges observed are 2.080±0.084-33.675±1.356 Bq kg[Formula: see text], 17.222±0.198-119.949±1.379 Bq kg[Formula: see text], and 11.203 ± 0.325-748.828±21.716 Bq kg[Formula: see text], respectively. The average values obtained for hazard indices are as follows: radium equivalent activity (82.779 Bq kg[Formula: see text]), absorbed dose rate (36.394 nGy h[Formula: see text]), annual effective dose equivalent (0.045 mSv yearr[Formula: see text]), gamma index (0.291), external hazard index (0.224), internal hazard index (0.253), excess lifetime cancer risk (0.159), annual gonadal dose equivalent (243.278 mSv year[Formula: see text]), alpha index (0.054), and activity utilization index (0.716). However, in most places, thorium-232 concentration is greater than those of the world average and recommended values. In specific locations such as Ward 4 in Baluwatar, the soil was found to have concentrations of Ra[Formula: see text] and K[Formula: see text] exceeding recommended limits. Despite this localized concern, the overall analysis of hazard indices across the studied areas revealed that most values were within permissible limits. This suggests that, on a broader scale, radiation exposure may not be a significant concern in the investigated regions. Nonetheless, the study recommends regular monitoring in additional locations to ensure a comprehensive and ongoing assessment of radiation levels.
    Matched MeSH terms: Environmental Monitoring*
  13. Chahban M, Akodad M, Skalli A, Gueddari H, El Yousfi Y, Ait Hmeid H, et al.
    Environ Res, 2024 Mar 01;244:117939.
    PMID: 38128604 DOI: 10.1016/j.envres.2023.117939
    The Guerouaou aquifer investigation spanning 280 km2 in Ain Zohra yields promising outcomes, instilling optimism for regional water quality. These analyses were applied to 45 sampling instances from 43 wells, enabling a comprehensive water quality assessment. Groundwater conductivity ranged from medium to high, peaking at 18360 ms/cm2. The conductivity reveals insights about the groundwater's mineralization. Key physiochemical parameters fell within desirable thresholds, bolstering the positive perspective. HCO3- levels spanned 82-420 mg/L, while chloride content ranged from 38 to 5316 mg/L, benefiting water quality. NO3- ions, vital for gauging pollution, ranged from 0 to 260 mg/L, indicating favorable results. Cation concentrations exhibited encouraging variations: Ca2+- 24 to 647 mg/L, Mg2+- 12 to 440 mg/L, Na+- 18 to 2722 mg/L, K+- 1.75 to 28.65 mg/L. These collectively favor water quality. Halite breakdown dominated mineralization, as evidenced by the prevalence of Na-Cl-Na-SO4 facies. Water resource management and local communities need effective management and mitigation strategies to prevent saltwater intrusion.
    Matched MeSH terms: Environmental Monitoring/methods
  14. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Chemosphere, 2021 Feb;264(Pt 1):128488.
    PMID: 33045559 DOI: 10.1016/j.chemosphere.2020.128488
    Contamination of endocrine disrupting compounds (EDCs) in tap water is an emerging global issue, and there are abundant influencing factors that have an ambivalent effect on their transportation and fate. Different housing types vary in terms of water distribution system operation and design, water consumption choices, and other hydraulic factors, which potentially affect the dynamics, loadings, and partitioning of pollutants in tap water. Thus, this study analyzed 18 multiclass EDCs in tap water from different housing types (i.e., landed and high-rise) and the associated health risks. Sample analyses revealed the presence of 16 EDCs, namely hormones (5), pharmaceuticals (8), a pesticide (1), and plasticizers (2) in tap water, with the prevalent occurrence of bisphenol A up to 66.40 ng/L in high-rise housing. The presence of caffeine and sulfamethoxazole distribution in tap water was significantly different between landed and high-rise housings (t(152) = -2.298, p = 0.023 and t(109) = 2.135, p = 0.035). Moreover, the salinity and conductivity of tap water in high-rise housings were significantly higher compared to those in landed housings (t(122) = 2.411, p = 0.017 and t(94) = 2.997, p = 0.003, respectively). Furthermore, there were no potential health risks of EDCs (risk quotient 
    Matched MeSH terms: Environmental Monitoring
  15. Yap CK, Chew W, Al-Mutairi KA, Al-Shami SA, Nulit R, Ibrahim MH, et al.
    PMID: 33924835 DOI: 10.3390/ijerph18094682
    The invasive weed Asystasia gangetica was investigated for its potential as a biomonitor and as a phytoremediator of potentially toxic metals (PTMs) (Cd, Cu, Ni, Pb, and Zn) in Peninsular Malaysia owing to its ecological resistance towards unfavourable environments. The biomonitoring potential of PTMs was determined based on the correlation analysis of the metals in the different parts of the plant (leaves, stems, and roots) and its habitat topsoils. In the roots, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 2.18, 9.22 to 139, 0.63 to 5.47, 2.43 to 10.5, and 50.7 to 300, respectively. In the leaves, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 1.16, 7.94 to 20.2, 0.03 to 6.13, 2.10 to 21.8, and 18.8 to 160, respectively. In the stems, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 1.25, 5.57 to 11.8, 0.23 to 3.69, 0.01 to 7.79, and 26.4 to 246, respectively. On the other hand, the phytoremediation potential of the five metals was estimated based on the bioconcentration factor (BCF) and the translocation factor (TF) values. Correlation analysis revealed that the roots and stems could be used as biomonitors of Cu, the stems as biomonitors of Ni, the roots and leaves as biomonitors of Pb, and all three parts of the plant as biomonitors of Zn. According to the BCF values, in the topsoil, the "easily, freely, leachable, or exchangeable" geochemical fractions of the five metals could be more easily transferred to the roots, leaves, and stems when compared with total concentrations. Based on the TF values of Cd, Ni, and Pb, the metal transfer to the stems (or leaves) from the roots was efficient (>1.0) at most sampling sites. The results of BCF and TF showed that A. gangetica was a good phytoextractor for Cd and Ni, and a good phytostabilizer for Cu, Pb, and Zn. Therefore, A. gangetica is a good candidate as a biomonitor and a phytoremediator of Ni, Pb, and Zn for sustainable contaminant remediation subject to suitable field management strategies.
    Matched MeSH terms: Environmental Monitoring
  16. Pramanik BK, Pramanik SK, Monira S
    Chemosphere, 2021 Nov;282:131053.
    PMID: 34098311 DOI: 10.1016/j.chemosphere.2021.131053
    Nano/microplastics (NPs/MPs), a tiny particle of plastic pollution, are known as one of the most important environmental threats to marine ecosystems. Wastewater treatment plants can act as entrance routes for NPs/MPs to the aquatic environment as they breakdown of larger fragments of the plastic component during the treatment process; therefore, it is necessary to remove NPs/MPs during the wastewater treatment process. In this study, understanding the effect of water shear force on the fragmentation of larger size MPs into smaller MPs and NPs and their removal by air flotation and nano-ferrofluid (i.e., magnetite and cobalt ferrite particle as a coagulant) and membrane processes were investigated as a proof-of-concept study. It is found that a two-blade mechanical impeller could fragment MPs from 75, 150 and 300 μm into mean size NPs/MPs of 0.74, 1.14 and 1.88 μm, respectively. Results showed that the maximum removal efficiency of polyethylene, polyvinyl chloride and polyester was 85, 82 and 69%, respectively, in the air flotation process. Increasing the dose of behentrimonium chloride surfactant from 2 to 10 mg/L improved the efficiency of the air flotation process for NPs/MPs removal. It is also found that the removal efficiency of NPs/MPs by the air flotation system depends on solution pH, size, and types of NPs/MPs. This study also found a less significant removal efficiency of NPs/MPs by both types of ferrofluid used in this study with an average removal of 43% for magnetite and 55% for cobalt ferrite. All three plastics tested had similar removal efficiency by the nano-ferrofluid particles, meaning that this removal technique does not rely on the plastic component type. Among all the process tested, both ultrafiltration and microfiltration membrane processes were highly effective, removing more than 90% of NPs/MPs fragment particles. Overall, this study has confirmed the effectiveness of using air flotation and the membrane process to remove NPs/MPs from wastewater.
    Matched MeSH terms: Environmental Monitoring
  17. Curren E, Kuwahara VS, Yoshida T, Leong SCY
    Environ Pollut, 2021 Nov 01;288:117776.
    PMID: 34280748 DOI: 10.1016/j.envpol.2021.117776
    Microplastic pollution is a prevalent and serious problem in marine environments. These particles have a detrimental impact on marine ecosystems. They are harmful to marine organisms and are known to be a habitat for toxic microorganisms. Marine microplastics have been identified in beach sand, the seafloor and also in marine biota. Although research investigating the presence of microplastics in various marine environments have increased across the years, studies in Southeast Asia are still relatively limited. In this paper, 36 studies on marine microplastic pollution in Southeast Asia were reviewed and discussed, focusing on microplastics in beach and benthic sediments, seawater and marine organisms. These studies have shown that the presence of fishing harbours, aquaculture farms, and tourism result in an increased abundance of microplastics. The illegal and improper disposal of waste from village settlements and factories also contribute to the high abundance of microplastics observed. Hence, it is crucial to identify the hotspots of microplastic pollution, for assessment and mitigation purposes. Future studies should aim to standardize protocols and quantification, to allow for better quantification and assessment of the levels of microplastic contamination for monitoring purposes.
    Matched MeSH terms: Environmental Monitoring
  18. Yusuf A, Sodiq A, Giwa A, Eke J, Pikuda O, Eniola JO, et al.
    Environ Pollut, 2022 Jan 01;292(Pt B):118421.
    PMID: 34756874 DOI: 10.1016/j.envpol.2021.118421
    The gravity of the impending threats posed by microplastics (MPs) pollution in the environment cannot be over-emphasized. Several research studies continue to stress how important it is to curb the proliferation of these small plastic particles with different physical and chemical properties, especially in aquatic environments. While several works on how to monitor, detect and remove MPs from the aquatic environment have been published, there is still a lack of explicit regulatory framework for mitigation of MPs globally. A critical review that summarizes recent advances in MPs research and emphasizes the need for regulatory frameworks devoted to MPs is presented in this paper. These frameworks suggested in this paper may be useful for reducing the proliferation of MPs in the environment. Based on all reviewed studies related to MPs research, we discussed the occurrence of MPs by identifying the major types and sources of MPs in water bodies; examined the recent ways of detecting, monitoring, and measuring MPs routinely to minimize projected risks; and proposed recommendations for consensus regulatory actions that will be effective for MPs mitigation.
    Matched MeSH terms: Environmental Monitoring
  19. Uning R, Suratman S, Nasir FAM, Latif MT
    Bull Environ Contam Toxicol, 2022 Jan;108(1):145-150.
    PMID: 34296326 DOI: 10.1007/s00128-021-03334-0
    This study determines the bulk surface water (BSW) dissolved inorganic nutrients of nitrogen (DINi) and phosphate (DIP) during the upwelling season off the east coast of Peninsular Malaysia, South China Sea. BSW samples were analysed for DINi and DIP by using a standard automated colorimetric method. BSW DINi and DIP concentrations varied between 0.11 and 2.55 μM (mean 1.12 ± 0.63 μM), and below detection limit, and 0.29 μM (mean 0.11 ± 0.08 μM), respectively. The spatial distribution of higher concentrations between DINi and DIP was distinct. However, the highest concentrations of DINi and DIP were mostly recorded in the month of peak upwelling (July and August), where colder BSW temperatures were also encountered during field sampling. This study provides new evidence on the presence of BSW nutrients of DINi and DIP during upwelling season peak in July and August before their decline in September.
    Matched MeSH terms: Environmental Monitoring
  20. Kumar V, Sharma N, Duhan L, Pasrija R, Thomas J, Umesh M, et al.
    Environ Toxicol Pharmacol, 2023 Mar;98:104045.
    PMID: 36572198 DOI: 10.1016/j.etap.2022.104045
    Microplastics are the small fragments of the plastic molecules which find their applications in various routine products such as beauty products. Later, it was realized that it has several toxic effects on marine and terrestrial organisms. This review is an approach in understanding the microplastics, their origin, dispersal in the aquatic system, their biodegradation and factors affecting biodegradation. In addition, the paper discusses the major engineering approaches applied in microbial biotechnology. Specifically, it reviews microbial genetic engineering, such as PET-ase engineering, MHET-ase engineering, and immobilization approaches. Moreover, the major challenges associated with the plastic removal are presented by evaluating the recent reports available.
    Matched MeSH terms: Environmental Monitoring
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links