Displaying publications 1 - 20 of 143 in total

Abstract:
Sort:
  1. Alias N, Liu A, Egodawatta P, Goonetilleke A
    J. Environ. Manage., 2014 Feb 15;134:63-9.
    PMID: 24463850 DOI: 10.1016/j.jenvman.2013.12.034
    The validity of using rainfall characteristics as lumped parameters for investigating the pollutant wash-off process such as first flush occurrence is questionable. This research study introduces an innovative concept of using sector parameters to investigate the relationship between the pollutant wash-off process and different sectors of the runoff hydrograph and rainfall hyetograph. The research outcomes indicated that rainfall depth and rainfall intensity are two key rainfall characteristics which influence the wash-off process compared to the antecedent dry period. Additionally, the rainfall pattern also plays a critical role in the wash-off process and is independent of the catchment characteristics. The knowledge created through this research study provides the ability to select appropriate rainfall events for stormwater quality treatment design based on the required treatment outcomes such as the need to target different sectors of the runoff hydrograph or pollutant species. The study outcomes can also contribute to enhancing stormwater quality modelling and prediction in view of the fact that conventional approaches to stormwater quality estimation is primarily based on rainfall intensity rather than considering other rainfall parameters or solely based on stochastic approaches irrespective of the characteristics of the rainfall event.
  2. Mohammed RR, Chong MF
    J. Environ. Manage., 2014 Jan;132:237-49.
    PMID: 24321284 DOI: 10.1016/j.jenvman.2013.11.031
    Palm Oil Mill Effluent (POME) treatment has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The main aim of this work is to evaluate the potential of applying natural, chemically and thermally modified banana peel as sorbent for the treatment of biologically treated POME. Characteristics of these sorbents were analyzed with BET surface area and SEM. Batch adsorption studies were carried out to remove color, total suspended solids (TSS), chemical oxygen demand (COD), tannin and lignin, and biological oxygen demand (BOD) onto natural banana peel (NBP), methylated banana peel (MBP), and banana peel activated carbon (BPAC) respectively. The variables of pH, adsorbent dosage, and contact time were investigated in this study. Maximum percentage removal of color, TSS, COD, BOD, and tannin and lignin (95.96%, 100%, 100%, 97.41%, and 76.74% respectively) on BPAC were obtained at optimized pH of 2, contact time of 30 h and adsorbent dosage of 30 g/100 ml. The isotherm data were well described by the Redlich-Peterson isotherm model with correlation coefficient of more than 0.99. Kinetic of adsorption was examined by Langergren pseudo first order, pseudo second order, and second order. The pseudo second order was identified to be the governing mechanism with high correlation coefficient of more than 0.99.
  3. Al-Baldawi IA, Abdullah SR, Suja F, Anuar N, Mushrifah I
    J. Environ. Manage., 2013 Nov 30;130:324-30.
    PMID: 24113536 DOI: 10.1016/j.jenvman.2013.09.010
    Two types of flow system, free surface flow (FSF) and sub-surface flow (SSF), were examined to select a better way to remove total petroleum hydrocarbons (TPH) using diesel as a hydrocarbon model in a phytotoxicity test to Scirpus grossus. The removal efficiencies of TPH for the two flow systems were compared. Several wastewater parameters, including temperature (T, °C), dissolved oxygen (DO, mgL(-1)), oxidation-reduction potential (ORP, mV), and pH were recorded during the experimental runs. In addition, overall plant lengths, wet weights, and dry weights were also monitored. The phytotoxicity test using the bulrush plant S. grossus was run for 72 days with different diesel concentrations (1%, 2%, and 3%) (Vdiesel/Vwater). A comparison between the two flow systems showed that the SSF system was more efficient than the FSF system in removing TPH from the synthetic wastewater, with average removal efficiencies of 91.5% and 80.2%, respectively. The SSF system was able to tolerate higher diesel concentrations than was the FSF system.
  4. Yasin NH, Mumtaz T, Hassan MA, Abd Rahman N
    J. Environ. Manage., 2013 Nov 30;130:375-85.
    PMID: 24121591 DOI: 10.1016/j.jenvman.2013.09.009
    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.
  5. Ting SC, Ismail AR, Malek MA
    J. Environ. Manage., 2013 Nov 15;129:260-5.
    PMID: 23968912 DOI: 10.1016/j.jenvman.2013.07.022
    This study aims at developing a novel effluent removal management tool for septic sludge treatment plants (SSTP) using a clonal selection algorithm (CSA). The proposed CSA articulates the idea of utilizing an artificial immune system (AIS) to identify the behaviour of the SSTP, that is, using a sequence batch reactor (SBR) technology for treatment processes. The novelty of this study is the development of a predictive SSTP model for effluent discharge adopting the human immune system. Septic sludge from the individual septic tanks and package plants will be desuldged and treated in SSTP before discharging the wastewater into a waterway. The Borneo Island of Sarawak is selected as the case study. Currently, there are only two SSTPs in Sarawak, namely the Matang SSTP and the Sibu SSTP, and they are both using SBR technology. Monthly effluent discharges from 2007 to 2011 in the Matang SSTP are used in this study. Cross-validation is performed using data from the Sibu SSTP from April 2011 to July 2012. Both chemical oxygen demand (COD) and total suspended solids (TSS) in the effluent were analysed in this study. The model was validated and tested before forecasting the future effluent performance. The CSA-based SSTP model was simulated using MATLAB 7.10. The root mean square error (RMSE), mean absolute percentage error (MAPE), and correction coefficient (R) were used as performance indexes. In this study, it was found that the proposed prediction model was successful up to 84 months for the COD and 109 months for the TSS. In conclusion, the proposed CSA-based SSTP prediction model is indeed beneficial as an engineering tool to forecast the long-run performance of the SSTP and in turn, prevents infringement of future environmental balance in other towns in Sarawak.
  6. Sheau-Ting L, Mohammed AH, Weng-Wai C
    J. Environ. Manage., 2013 Dec 15;131:196-205.
    PMID: 24178312 DOI: 10.1016/j.jenvman.2013.10.001
    This study attempts to identify the optimum social marketing mix for marketing energy conservation behaviour to students in Malaysian universities. A total of 2000 students from 5 major Malaysian universities were invited to provide their preferred social marketing mix. A choice-based conjoint analysis identified a mix of five social marketing attributes to promote energy conservation behaviour; the mix is comprised of the attributes of Product, Price, Place, Promotion, and Post-purchase Maintenance. Each attribute of the mix is associated with a list of strategies. The Product and Post-purchase Maintenance attributes were identified by students as the highest priority attributes in the social marketing mix for energy conservation behaviour marketing, with shares of 27.12% and 27.02%, respectively. The least preferred attribute in the mix is Promotion, with a share of 11.59%. This study proposes an optimal social marketing mix to university management when making decisions about marketing energy conservation behaviour to students, who are the primary energy consumers in the campus. Additionally, this study will assist university management to efficiently allocate scarce resources in fulfilling its social responsibility and to overcome marketing shortcomings by selecting the right marketing mix.
  7. Sidique SF, Lupi F, Joshi SV
    J. Environ. Manage., 2013 Sep 30;127:339-46.
    PMID: 23810167 DOI: 10.1016/j.jenvman.2013.05.001
    Drop-off recycling is one of the most widely adopted recycling programs in the United States. Despite its wide implementation, relatively little literature addresses the demand for drop-off recycling. This study examines the demand for drop-off recycling sites as a function of travel costs and various site characteristics using the random utility model (RUM). The findings of this study indicate that increased travel costs significantly reduce the frequency of visits to drop-off sites implying that the usage pattern of a site is influenced by its location relative to where people live. This study also demonstrates that site specific characteristics such as hours of operation, the number of recyclables accepted, acceptance of commingled recyclables, and acceptance of yard-waste affect the frequency of visits to drop-off sites.
  8. Osman WH, Abdullah SR, Mohamad AB, Kadhum AA, Rahman RA
    J. Environ. Manage., 2013 May 30;121:80-6.
    PMID: 23524399 DOI: 10.1016/j.jenvman.2013.02.005
    A lab-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), a combined adsorption and biological process, was developed to treat real wastewater from a recycled paper mill. In this study, one-consortia of mixed culture (4000-5000 mg/L) originating from recycled paper mill activated sludge from Kajang, Malaysia was acclimatized. The GAC-SBBR was fed with real wastewater taken from the same recycled paper mill, which had a high concentration of chemical oxygen demand (COD) and adsorbable organic halides (AOX). The operational duration of the GAC-SBBR was adjusted from 48 h to 24, 12 and finally 8 h to evaluate the effect of the hydraulic retention time (HRT) on the simultaneous removal of COD and AOX. The COD and AOX removals were in the range of 53-92% and 26-99%, respectively. From this study, it was observed that the longest HRT (48 h) yielded a high removal of COD and AOX, at 92% and 99%, respectively.
  9. Chai LK, Wong MH, Bruun Hansen HC
    J. Environ. Manage., 2013 Aug 15;125:28-32.
    PMID: 23632002 DOI: 10.1016/j.jenvman.2013.04.005
    The insecticide chlorpyrifos is extensively used in the humid tropics for insect control on crops and soils. Chlorpyrifos degradation and mineralization was studied under laboratory conditions to characterize the critical factors controlling the degradation and mineralization in three humid tropical soils from Malaysia. The degradation was fastest in moist soils (t1/2 53.3-77.0 days), compared to dry (t1/2 49.5-120 days) and wet soils (t1/2 63.0-124 days). Degradation increased markedly with temperature with activation energies of 29.0-76.5 kJ mol(-1). Abiotic degradation which is important for chlorpyrifos degradation in sub-soils containing less soil microbial populations resulted in t½ of 173-257 days. Higher chlorpyrifos dosages (5-fold) which are often applied in the tropics due to severe insects infestations caused degradation and mineralization rates to decrease by 2-fold. The mineralization rates were more sensitive to the chlorpyrifos application rates reflecting that degradation of metabolites is rate limiting and the toxic effects of some of the metabolites produced. Despite that chlorpyrifos is frequently used and often in larger amounts on tropical soils compared with temperate soils, higher temperature, moderate moisture and high activity of soil microorganisms will stimulate degradation and mineralization.
  10. Ruqayyah TI, Jamal P, Alam MZ, Mirghani ME
    J. Environ. Manage., 2013 Mar 30;118:115-21.
    PMID: 23422153 DOI: 10.1016/j.jenvman.2013.01.003
    The degradation potential and ligninolytic enzyme production of two isolated Panus tigrinus strains (M609RQY and M109RQY) were evaluated in this study. These strains were grown on three selected abundant agro-industrial wastes (rice straw; rice husk and cassava peel) under solid-state fermentation conditions. Degradation potential was determined by analyzing the chemical composition of the selected substrates before and after fermentation along with ligninolytic enzyme production. The strain M609RQY led to the highest lignin degradation of 40.81% on cassava peel, 11.25% on rice husk and 67.96% on rice straw. Both strains significantly increased the protein content of cassava peel. Rice husk stimulated maximum laccase (2556 U/L) and lignin peroxidase (24 U/L) production by the strains M109RQY and M609RQY, respectively. Furthermore, cassava peel stimulated maximum manganese-dependent peroxidase (141 U/L) production by the strain M109RQY. The de-lignified rice straw and the nutritionally-improved cassava peel could serve as potential animal feed supplements.
  11. Alkarkhi AF, Lim HK, Yusup Y, Teng TT, Abu Bakar MA, Cheah KS
    J. Environ. Manage., 2013 Jun 15;122:121-9.
    PMID: 23570974 DOI: 10.1016/j.jenvman.2013.03.010
    The ability of aluminum coagulant extracted from red earth to treat Terasil Red R (disperse) and Cibacron Red R (reactive) synthetic dye wastewater was studied. The effects of extractant concentration, soil-to-volume of extractant ratio, and the types of extracting agents (NaOH vs. KCl) on the concentration of aluminum extracted were also investigated. In addition, the efficiency of extracted aluminum was compared with aluminum sulfate, in terms of its capability to reduce the chemical oxygen demand (COD) and to remove synthetic color. Factorial design was applied to determine the effect of selected factors on the amount of aluminum extracted from red earth (i.e., pH, dose of coagulant, type of coagulant on COD reduction, and color removal). It was found that only selected factors exhibited a significant effect on the amount of aluminum extracted from red earth. It was also determined that all factors and their interactions exhibited a significant effect on COD reduction and color removal when applying the extracted aluminum in a standard coagulation process. The results were also compared to aluminum sulfate. Furthermore, NaOH was found to be a better extractant of aluminum in red earth than KCl. Therefore, the best extracting conditions for both extractants were as follows: 2 M NaOH and in a 1:5 (soil/volume of extractant) ratio; 1 M KCl and 1:5 ratio. In treating synthetic dye wastewater, the extracted coagulant showed comparable treatment efficiency to the commercial coagulant. The extracted coagulant was able to reduce the COD of the dispersed dye by 85% and to remove 99% of the color of the dispersed dye, whereas the commercial coagulant reduced 90% of the COD and removed 99% of the color of the dispersed dye. Additionally, the extracted coagulant was able to reduce the COD of the reactive dye by 73% and to remove 99% of the color of the reactive dye. However, the commercial coagulant managed to reduce the COD of the reactive dye by 94% and to remove 96% of the color for the reactive dye.
  12. Muhamad MH, Sheikh Abdullah SR, Mohamad AB, Abdul Rahman R, Hasan Kadhum AA
    J. Environ. Manage., 2013 May 30;121:179-90.
    PMID: 23542216 DOI: 10.1016/j.jenvman.2013.02.016
    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.
  13. Naganathan S, Razak HA, Hamid SN
    J. Environ. Manage., 2013 Oct 15;128:637-41.
    PMID: 23845957 DOI: 10.1016/j.jenvman.2013.06.009
    This paper reports the corrosivity and leaching behavior of CLSM made using two different industrial wastes i.e. bottom ash from an incineration facility and quarry dust. The leachate samples were derived from fresh and hardened CLSM mixtures, and studied for leaching and electrical resistivity. The release of various contaminants and the consequent environmental impact caused by the contaminants were studied by the measurement of contaminants in the bleed, in the leachate at 28 days, and on the leachate derived from crushed block and whole block leaching done over a period of 126 days. Results indicated that the CLSM mixtures are non corrosive; diffusion was the leaching mechanism; and the contaminants were found to be moderate to low mobility.
  14. Hasan HA, Abdullah SR, Kofli NT, Kamarudin SK
    J. Environ. Manage., 2012 Nov 30;111:34-43.
    PMID: 22813857 DOI: 10.1016/j.jenvman.2012.06.027
    Manganese (Mn(2+)) is one of the inorganic contaminant that causes problem to water treatment and water distribution due to the accumulation on water piping systems. In this study, Bacillus sp. and sewage activated sludge (SAS) were investigated as biosorbents in laboratory-scale experiments. The study showed that Bacillus sp. was a more effective biosorbent than SAS. The experimental data were fitted to the Langmuir (Langmuir-1 & Langmuir-2), Freundlich, Temkin, Dubinin-Radushkevich (D-R) and Redlich-Peterson (R-P) isotherms to obtain the characteristic parameters of each model. Mn(2+) biosorption by Bacillus sp. was found to be significantly better fitted to the Langmuir-1 isotherm than the other isotherms, while the D-R isotherm was the best fit for SAS; i.e., the χ(2) value was smaller than that for the Freundlich, Temkin, and R-P isotherms. According to the evaluation using the Langmuir-1 isotherm, the maximum biosorption capacities of Mn(2+) onto Bacillus sp. and SAS were 43.5 mg Mn(2+)/g biomass and 12.7 mg Mn(2+)/g biomass, respectively. The data fitted using the D-R isotherm showed that the Mn(2+) biosorption processes by both Bacillus sp. and SAS occurred via the chemical ion-exchange mechanism between the functional groups and Mn(2+) ion.
  15. Noruzman AH, Muhammad B, Ismail M, Abdul-Majid Z
    J. Environ. Manage., 2012 Nov 15;110:27-32.
    PMID: 22705857 DOI: 10.1016/j.jenvman.2012.05.019
    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones.
  16. Von Lau E, Gan S, Ng HK
    J. Environ. Manage., 2012 Sep 30;107:124-30.
    PMID: 22595079 DOI: 10.1016/j.jenvman.2012.04.029
    Experimental extraction tests are conducted to investigate feasibility of saturated palm kernel oil (PKO) and unsaturated soybean oil (SO) to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sand. The extraction rates and efficiencies for lowly contaminated (LC) and highly contaminated (HC) sands at temperatures of 30 °C and 70 °C are evaluated using empirical first order kinetic dissolution models. In LC sand, the extraction is dominated by the diffusion of PAHs adsorbed onto particle surfaces and the direct dissolution of PAH phase. In HC sand, a rapid diffusion of PAHs adsorbed onto particle surfaces and a direct dissolution of PAH phase occur followed by a slower diffusion of PAHs entrapped within the pores and micropores. Larger diffusion resistance during HC sand extractions results in an average 10.8% reduction in extraction efficiencies compared to LC sand. Increased temperature generally increases the mass transfer rates and extraction efficiencies. Additionally, the physicochemical properties of both oils and PAHs also determine the extent of PAH extraction into oil.
  17. Syafalni, Lim HK, Ismail N, Abustan I, Murshed MF, Ahmad A
    J. Environ. Manage., 2012 Dec 15;112:353-9.
    PMID: 22964042 DOI: 10.1016/j.jenvman.2012.08.001
    In this research, the capability of lateritic soil used as coagulant for the treatment of stabilized leachate from the Penang-Malaysia Landfill Site was investigated. The evaluation of lateritic soil coagulant in comparison with commercialized chemical coagulants, such as alum, was performed using conventional jar test experiments. The optimum pH and coagulant dosage were identified for the lateritic soil coagulant and the comparative alum coagulant. It was found that the application of lateritic soil coagulant was quite efficient in the removal of COD, color and ammoniacal-nitrogen content from the landfill leachate. The optimal pH value was 2.0, while 14 g/L of lateritic soil coagulant was sufficient in removing 65.7% COD, 81.8% color and 41.2% ammoniacal-nitrogen. Conversely, the optimal pH and coagulant dosage for the alum were pH 4.8 and 10 g/L respectively, where 85.4% COD, 96.4% color and 47.6% ammoniacal-nitrogen were removed from the same leachate sample. Additionally, the Sludge Volume Index (SVI) ratio of alum and lateritic soil coagulant was 53:1, which indicated that less sludge was produced and was an environmentally friendly product. Therefore, lateritic soil coagulant can be considered a viable alternative in the treatment of landfill leachate.
  18. Hadibarata T, Kristanti RA
    J. Environ. Manage., 2012 Nov 30;111:115-9.
    PMID: 22835655 DOI: 10.1016/j.jenvman.2012.06.044
    The biodegradation of benzo[a]pyrene (BaP) by using Polyporus sp. S133, a white-rot fungus isolated from oil-contaminated soil was investigated. Approximately 73% of the initial concentration of BaP was degraded within 30 d of incubation. The isolation and characterization of 3 metabolites by thin layer chromatography, column chromatography, and UV-vis spectrophotometry in combination with gas chromatography-mass spectrometry, indicated that Polyporus sp. S133 transformed BaP to BaP-1,6-quinone. This quinone was further degraded in 2 ways. First, BaP-1,6-quinone was decarboxylated and oxidized to form coumarin, which was then hydroxylated to hydroxycoumarin, and finally to hydroxyphenyl acetic acid by addition of an epoxide group. Second, Polyporus sp. S133 converted BaP-1,6-quinone into a major product, 1-hydroxy-2-naphthoic acid. During degradation, free extracellular laccase was detected with reduced activity of lignin peroxidase, manganese-dependent peroxidase and 2,3-dioxygenase, suggesting that laccase and 1,2-dioxygenase might play an important role in the transformation of PAHs compounds.
  19. Arebey M, Hannan MA, Begum RA, Basri H
    J. Environ. Manage., 2012 Aug 15;104:9-18.
    PMID: 22484654 DOI: 10.1016/j.jenvman.2012.03.035
    This paper presents solid waste bin level detection and classification using gray level co-occurrence matrix (GLCM) feature extraction methods. GLCM parameters, such as displacement, d, quantization, G, and the number of textural features, are investigated to determine the best parameter values of the bin images. The parameter values and number of texture features are used to form the GLCM database. The most appropriate features collected from the GLCM are then used as inputs to the multi-layer perceptron (MLP) and the K-nearest neighbor (KNN) classifiers for bin image classification and grading. The classification and grading performance for DB1, DB2 and DB3 features were selected with both MLP and KNN classifiers. The results demonstrated that the KNN classifier, at KNN = 3, d = 1 and maximum G values, performs better than using the MLP classifier with the same database. Based on the results, this method has the potential to be used in solid waste bin level classification and grading to provide a robust solution for solid waste bin level detection, monitoring and management.
  20. Ramayah T, Lee JW, Lim S
    J. Environ. Manage., 2012 Jul 15;102:141-7.
    PMID: 22446140 DOI: 10.1016/j.jenvman.2012.02.025
    This paper examines the determinants of recycling behaviour among 200 university students from the perspective of the theory of planned behaviour (TPB). Data was analysed using Structural Equation Modelling technique. Findings indicate that environmental awareness was significantly related to attitude towards recycling, whilst attitude and social norms had significant impact on recycling behaviour. However, convenience and cost of recycling were not significant reasons for recycling. The study has enhanced the understanding of the determinants of recycling behaviour and has implications for schools and governmental agencies in educating and encouraging positive recycling behaviour. It also confirms the appropriateness of the TPB in examining studies of this nature. Further suggestions for future research are offered.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links