Displaying publications 1 - 20 of 304 in total

  1. Saqib NU, Adnan R, Shah I
    Environ Sci Pollut Res Int, 2016 Aug;23(16):15941-51.
    PMID: 27335012 DOI: 10.1007/s11356-016-6984-7
    Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.
  2. Solarin SA, Lean HH
    Environ Sci Pollut Res Int, 2016 Sep;23(18):18753-65.
    PMID: 27314422 DOI: 10.1007/s11356-016-7063-9
    The objective of this study is to examine the impact of natural gas consumption, output, and urbanization on CO2 emission in China and India for the period, 1965-2013. A cointegraton test, which provides for endogenously determined structural breaks, has been applied to examine the long-run relationship and to investigate the presence of environmental Kuznets curve (EKC) in the two countries. The presence of causal relationship between the variables is also investigated. The findings show that there is a long-run relationship in the variables and natural gas, real GDP, and urbanization have long-run positive impact on emission in both countries. There is no evidence for EKC in China and India. The findings further suggest that there is a long-run feedback relationship between the variables. The policy inferences of these findings are discussed.
  3. Sabuti AA, Mohamed CA
    Environ Sci Pollut Res Int, 2016 Sep;23(18):18451-65.
    PMID: 27287490 DOI: 10.1007/s11356-016-7023-4
    Concentration activities of (210)Pb and (210)Po in the PM10 were determined to discuss their distribution and chemical behavior in relation to meteorological parameters especially in air mass transport during monsoon events. Marine aerosol samples were collected between January 2009 and December 2010 at the coastal region of Mersing, which is located in the southern South China Sea and is about 160 km northeast of Johor Bahru, as part of the atmosphere-ocean interaction program in Malaysia. About 47 PM10 samples were collected using the Sierra-Andersen model 1200 PM10 sampler over a 2-year sampling campaign between January 2009 and December 2010. Samples were processed using acid digestion sequential extraction techniques to analyze various fractions such as Fe and Mn oxides, organic matter, and residual fractions. While, (210)Pb and (210)Po activities were measured with the Gross Alpha/Beta Counting System model XLB-5 Tennelec® Series 5 and the Alpha Spectrometry (model Alpha Analyst Spectroscopy system with a silicon-surface barrier detector), respectively. The distribution activities of (210)Pb and (210)Po in the PM10 samples were varied from 162 to 881 μBq/m(3) with mean value of 347 ± 170 μBq/m(3) and from 85 to 1009 μBq/m(3) with mean value of 318 ± 202 μBq/m(3), respectively. The analysis showed that (210)Po activity in our samples lies in a border and higher range than global distribution values due to contributions from external sources injected to the atmosphere. The speciation of (210)Pb and (210)Po in marine aerosol corresponds to transboundary haze; e.g., biomass burning especially forest fires and long-range air mass transport of terrestrial dust has enriched concentrations of particle mass in the local atmosphere. The monsoon seems to play an important role in transporting terrestrial dust from Indo-China and northern Asia especially during the northeast monsoon, as well as biogenic pollutants originating from Sumatra and the southern ASEAN region during southwest monsoon events.
  4. Yavari S, Malakahmad A, Sapari NB
    Environ Sci Pollut Res Int, 2016 Sep;23(18):17928-40.
    PMID: 27255313 DOI: 10.1007/s11356-016-6943-3
    Biochar is the bio-solid material produced by pyrolysis. The biochar properties are controlled by feedstock and pyrolysis variables. In this study, the impacts of these production variables on biochar yield and physicochemical properties including pH, cation exchange capacity (CEC), total organic carbon (TOC) content, surface area, and pore volume and size were investigated. Rice husk (RH) and oil palm empty fruit bunches (EFB) were used as biomass. The biochars were produced at temperature range of 300 to 700 °C, heating rate of 3 to 10 °C/min and retention time of 1 to 3 h. The pyrolysis conditions were optimized using response surface methodology (RSM) technique to maximize the values of the responses. Analysis of variance (ANOVA) of the results demonstrated that the data fitted well to the linear and quadratic equations. Temperature was found to be the most effective parameter on the responses followed by retention time and heating rate, sequentially. CEC, TOC, surface area, and pore characteristics were evaluated as biochar properties determining their sorption potential. The optimum conditions for the maximum values of the properties were temperatures of 700 and 493.44 °C and time of 3 and 1 h for RH and EFB biochars, respectively. Heating rate at 3 °C/min was found to be the best rate for both biochars. The structure of EFB biomass was more sensitive to heating than rice husk. The biomass type and the production variables were demonstrated as the direct effective factors on biochar yield and physicochemical properties.
  5. Wang A, Wang Y, Di Liao X, Wu Y, Liang JB, Laudadio V, et al.
    Environ Sci Pollut Res Int, 2016 Aug;23(16):16272-9.
    PMID: 27154844 DOI: 10.1007/s11356-016-6777-z
    One of the environmental challenges that modern poultry industry faced is odor pollution caused by ammonia emission. The objectives of the study were to determine the effect of sodium butyrate on the production of ammonia in the cecal contents of laying hens using in vitro gas production study and to elucidate the mechanism behind it. The study consisted of a control (without sodium butyrate), and three experimental groups added with 10, 15, and 20 mg of sodium butyrate, respectively. Results showed that ammonia production in headspace of the syringe decreased by 8.2, 23, and 23 %, respectively, while ammonium production from the fermentation broth decreased by 6.3, 14.4, and 13.7 %, respectively. Sodium butyrate had no significant effect on the contents of uric acid and urea, nitrate-N, or total N in all treatments. However, sodium butyrate decreased the urease and uricase activities (P 
  6. Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S
    Environ Sci Pollut Res Int, 2016 Jul;23(14):13754-88.
    PMID: 27074929 DOI: 10.1007/s11356-016-6457-z
    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).
  7. Rana MM, Sulaiman N, Sivertsen B, Khan MF, Nasreen S
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17393-403.
    PMID: 27230142 DOI: 10.1007/s11356-016-6950-4
    Dhaka and its neighboring areas suffer from severe air pollution, especially during dry season (November-April). We investigated temporal and directional variations in particulate matter (PM) concentrations in Dhaka, Gazipur, and Narayanganj from October 2012 to March 2015 to understand different aspects of PM concentrations and possible sources of high pollution in this region. Ninety-six-hour backward trajectories for the whole dry season were also computed to investigate incursion of long-range pollution into this area. We found yearly PM10 concentrations in this area about three times and yearly PM2.5 concentrations about six times greater than the national standards of Bangladesh. Dhaka and its vicinity experienced several air pollution episodes in dry season when PM2.5 concentrations were 8-13 times greater than the World Health Organization (WHO) guideline value. Higher pollution and great contribution of PM2.5 most of the time were associated with the north-westerly wind. Winter (November to January) was found as the most polluted season in this area, when average PM10 concentrations in Dhaka, Gazipur, and Narayanganj were 257.1, 240.3, and 327.4 μg m(-3), respectively. Pollution levels during wet season (May-October) were, although found legitimate as per the national standards of Bangladesh, exceeded WHO guideline value in 50 % of the days of that season. Trans-boundary source identifications using concentration-weighted trajectory method revealed that the sources in the eastern Indian region bordering Bangladesh, in the north-eastern Indian region bordering Nepal and in Nepal and its neighboring areas had high probability of contributing to the PM pollutions at Gazipur station.
  8. Kanakaraju D, Motti CA, Glass BD, Oelgemöller M
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17437-48.
    PMID: 27230148 DOI: 10.1007/s11356-016-6906-8
    Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.
  9. Muhamad MS, Salim MR, Lau WJ, Yusop Z
    Environ Sci Pollut Res Int, 2016 Jun;23(12):11549-67.
    PMID: 26939684 DOI: 10.1007/s11356-016-6357-2
    Massive utilization of bisphenol A (BPA) in the industrial production of polycarbonate plastics has led to the occurrence of this compound (at μg/L to ng/L level) in the water treatment plant. Nowadays, the presence of BPA in drinking water sources is a major concern among society because BPA is one of the endocrine disruption compounds (EDCs) that can cause hazard to human health even at extremely low concentration level. Parallel to these issues, membrane technology has emerged as the most feasible treatment process to eliminate this recalcitrant contaminant via physical separation mechanism. This paper reviews the occurrences and effects of BPA toward living organisms as well as the application of membrane technology for their removal in water treatment plant. The potential applications of using polymeric membranes for BPA removal are also discussed. Literature revealed that modifying membrane surface using blending approach is the simple yet effective method to improve membrane properties with respect to BPA removal without compromising water permeability. The regeneration process helps in maintaining the performances of membrane at desired level. The application of large-scale membrane process in treatment plant shows the feasibility of the technology for removing BPA and possible future prospect in water treatment process.
  10. Khalik WF, Ong SA, Ho LN, Wong YS, Voon CH, Yusuf SY, et al.
    Environ Sci Pollut Res Int, 2016 Aug;23(16):16716-21.
    PMID: 27184147 DOI: 10.1007/s11356-016-6840-9
    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration.
  11. Ramakrishnan S, Hishan SS, Nabi AA, Arshad Z, Kanjanapathy M, Zaman K, et al.
    Environ Sci Pollut Res Int, 2016 Jul;23(14):14567-79.
    PMID: 27068914 DOI: 10.1007/s11356-016-6647-8
    This study aims to determine an interactive environmental model for economic growth that would be supported by the "sustainability principles" across the globe. The study examines the relationship between environmental pollutants (i.e., carbon dioxide emission, sulfur dioxide emission, mono-nitrogen oxide, and nitrous oxide emission); population growth; energy use; trade openness; per capita food production; and it's resulting impact on the real per capita GDP and sectoral growth (i.e., share of agriculture, industry, and services in GDP) in a panel of 34 high-income OECD, high-income non-OECD, and Europe and Central Asian countries, for the period of 1995-2014. The results of the panel fixed effect regression show that per capita GDP are influenced by sulfur dioxide emission, population growth, and per capita food production variability, while energy and trade openness significantly increases per capita income of the region. The results of the panel Seemingly Unrelated Regression (SUR) show that carbon dioxide emission significantly decreases the share of agriculture and industry in GDP, while it further supports the share of services sector to GDP. Both the sulfur dioxide and mono-nitrogen oxide emission decreases the share of services in GDP; nitrous oxide decreases the share of industry in GDP; while mono-nitrogen oxide supports the industrial activities. The following key growth-specific results has been obtained from the panel SUR estimation, i.e., (i) Both the food production per capita and trade openness significantly associated with the increasing share of agriculture, (ii) food production and energy use significantly increases the service sectors' productivity; (iii) food production decreases the industrial activities; (iv) trade openness decreases the share of services to GDP while it supports the industrial share to GDP; and finally, (v) energy demand decreases along with the increase agricultural share in the region. The results emphasize the need for an interactive environmental model that facilitates the process of sustainable development across the globe.
  12. Hamid R, Ahmad A, Usup G
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17269-76.
    PMID: 27221587 DOI: 10.1007/s11356-016-6655-8
    A study was carried out to determine the pathogenicity (hemolytic activity) on corals (Turbinaria sp.) and sea bass (Lates calcarifer) of Aeromonas hydrophila from water, sediment, and coral. Samples were collected from coastal water and coral reef areas. One hundred and sixty-two isolates were successfully isolated. Out of 162, 95 were from seawater, 49 from sediment, and 18 from coral. Sixteen isolates were picked and identified. Isolates were identified using a conventional biochemical test, the API 20NE kit, and 16S rRNA nucleotide sequences. Hemolytic activity was determined. Out of 16 isolates, 14 isolates were β-hemolytic and two isolates were non-hemolytic. Corals infected with A. hydrophila suffered bleaching. Similar effect was observed for both hemolytic and non-hemolytic isolates. Intramuscular injection of A. hydrophila into sea bass resulted in muscular bleeding and death. Higher infection rates were obtained from hemolytic compared to non-hemolytic strains of A. hydrophila isolates.
  13. Asaithambi P, Aziz ARA, Sajjadi B, Daud WMABW
    Environ Sci Pollut Res Int, 2017 Feb;24(6):5168-5178.
    PMID: 27221586 DOI: 10.1007/s11356-016-6909-5
    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm(2)), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm(2), electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.
  14. Asadpour R, Sapari NB, Isa MH, Kakooei S
    Environ Sci Pollut Res Int, 2016 Jun;23(12):11740-50.
    PMID: 26944428 DOI: 10.1007/s11356-016-6349-2
    Removal of oil spillage from the environment is a global concern. Various methods, including the use of fibers as sorbents, have been developed for oil spill control. Oil palm empty fruit bunch (OPEFB) fiber is a plant biomass that may be acetylated by acetic anhydride using N-bromosuccinimide (NBS) as a catalyst; here, the extent of acetylation may be calculated in terms of weight percent gain (WPG). The modified fiber was used to remove Tapis and Arabian crude oils. The optimum time, temperature, and catalyst concentration were 4 h, 120 °C, and 3 %, respectively, and these parameters could achieve an 11.49 % increase in WPG. The optimized parameters improved the adsorption capacity of OPEFB fibers for crude oil removal. The acetylated OPEFB fibers were characterized by using Fourier transform infrared spectroscopy and field emission scanning electron microscopy to observe the functional groups available and morphology. Kinetic and isotherm studies were conducted using different contact times and oil/water ratios. The rate of oil sorption onto the OPEFB fibers can be adequately described by the pseudo-second-order equation. Adsorption studies revealed that adsorption of crude oil on treated OPEFB fiber could be best described by the Langmuir isotherm model.
  15. Abuelhassan NN, Mutalib SA, Gimba FI, Yusoff WM
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17553-62.
    PMID: 27234829 DOI: 10.1007/s11356-016-6954-0
    This study aimed at determining the presence and characterization of Escherichia coli and Shiga toxin-producing E. coli (STEC) from imported frozen beef meats. Seventy-four (74) frozen imported beef meat samples from two countries, India (42 samples) and Australia (32 samples), were collected and tested for E. coli. These samples were purchased from the frozen meat sections of five different supermarkets in different locations in Selangor, Malaysia, from April 2012 to October 2014. A total of 222 E. coli strains were isolated from the meat samples; 126 strains were isolated from country A (India), and 96 E. coli strains were from country of origin B (Australia), respectively. A total of 70 E. coli strains were identified and characterized. All E. coli strains were isolated into Fluorocult medium and identified using API 20E kit. All selected E. coli strains were characterized for Shiga toxin genes (stx1 and stx2). All biochemically identified E. coli in this study were further subjected to molecular detection through polymerase chain reaction (PCR) amplification and characterization using 16S ribosomal RNA (rRNA) gene of Shiga toxin-producing E. coli. Of the 70 E. coli strains, 11 strains were positive for both Shiga toxin genes (stx1 and stx2) and 11 (11/70) strains were positive for stx1 gene, while 25 (25/70) strains were positive for stx2 gene. The analysis of 16S rRNA gene of all the E. coli isolates in this study was successfully sequenced and analyzed, and based on sequence data obtained, a phylogenetic tree of the 16S rRNA gene was performed using Clustal W programme in MEGA 6.06 software. Phylogenetic tree showed that the E. coli isolates in our study cluster with the strain of E. coli isolated in other countries, which further confirm that the isolates of E. coli in this study are similar to those obtained in other studies. As a result, all the strains obtained in this study proved to be a strain of pathogenic E. coli, which may cause a serious outbreak of food-borne disease. The isolation of pathogenic E. coli strains from the imported meat samples calls for prudent management of imported meats by the relevant authorities.
  16. Hena S, Rozi R, Tabassum S, Huda A
    Environ Sci Pollut Res Int, 2016 Aug;23(15):14868-80.
    PMID: 27072032 DOI: 10.1007/s11356-016-6540-5
    Cyanotoxins, microcystins and cylindrospermopsin, are potent toxins produced by cyanobacteria in potable water supplies. This study investigated the removal of cyanotoxins from aqueous media by magnetophoretic nanoparticle of polypyrrole adsorbent. The adsorption process was pH dependent with maximum adsorption occurring at pH 7 for microcystin-LA, LR, and YR and at pH 9 for microcystin-RR and cylindrospermopsin (CYN). Kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. Thermodynamic calculations showed that the cyanotoxin adsorption process is endothermic and spontaneous in nature. The regenerated adsorbent can be successfully reused without appreciable loss of its original capacity.
  17. Ali HS, Law SH, Zannah TI
    Environ Sci Pollut Res Int, 2016 Jun;23(12):12435-43.
    PMID: 26983914 DOI: 10.1007/s11356-016-6437-3
    The objective of this paper is to examine the dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria based on autoregressive distributed lags (ARDL) approach for the period of 1971-2011. The result shows that variables were cointegrated as null hypothesis was rejected at 1 % level of significance. The coefficients of long-run result reveal that urbanization does not have any significant impact on CO 2 emissions in Nigeria, economic growth, and energy consumption has a positive and significant impact on CO 2 emissions. However, trade openness has negative and significant impact on CO 2 emissions. Consumption of energy is among the main determinant of CO 2 emissions which is directly linked to the level of income. Despite the high level of urbanization in the country, consumption of energy still remains low due to lower income of the majority populace and this might be among the reasons why urbanization does not influence emissions of CO 2 in the country. Initiating more open economy policies will be welcoming in the Nigerian economy as the openness leads to the reduction of pollutants from the environment particularly CO 2 emissions which is the major gases that deteriorate physical environment.
  18. Sekhar YR, Sharma KV, Kamal S
    Environ Sci Pollut Res Int, 2016 May;23(10):9411-7.
    PMID: 26593731 DOI: 10.1007/s11356-015-5715-9
    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
  19. Kadhum SA, Ishak MY, Zulkifli SZ
    Environ Sci Pollut Res Int, 2016 Apr;23(7):6312-21.
    PMID: 26614452 DOI: 10.1007/s11356-015-5853-0
    The Bernam River is one of the most important rivers in Malaysia in that it provides water for industries and agriculture located along its banks. The present study was conducted to assess the level of contamination of heavy metals (Cd, Ni, Cr, Sn, and Fe) in surface sediments in the Bernam River. Nine surface sediment samples were collected from the lower, middle, and upper courses of the river. The results indicated that the concentrations of the metals decreased in the order of Sn > Cr > Ni > Fe > Cd (56.35, 14.90, 5.3, 4.6, and 0.62 μg/g(1) dry weight). Bernam River sediments have moderate to severe enrichment for Sn, moderate for Cd, and no enrichment for Cr, Ni, and Fe. The contamination factor (CF) results demonstrated that Cd and Sn are responsible for the high contamination. The pollution load index (PLI), for all the sampling sites, suggests that the sampling stations were generally unpolluted with the exception of the Bagan Tepi Sungai, Sabak Bernam, and Tanjom Malim stations. Multivariate techniques including Pearson's correlation and hierarchical cluster analysis were used to apportion the various sources of the metals. The results suggested that the sediment samples collected from the upper course of the river had lower metal concentrations, while sediments in the middle and lower courses of the river had higher metal concentrations. Therefore, our results can be useful as a baseline data for government bodies to adopt corrective measure on the issues related to heavy metal pollution in the Bernam River in the future.
  20. Yong SK, Skinner WM, Bolan NS, Lombi E, Kunhikrishnan A, Ok YS
    Environ Sci Pollut Res Int, 2016 Jan;23(2):1050-9.
    PMID: 26538256 DOI: 10.1007/s11356-015-5654-5
    Pristine chitosan beads were modified with sulfur (S)-containing functional groups to produce thiolated chitosan beads (ETB), thereby increasing S donor ligands and crosslinks. The effect of temperature, heating time, carbon disulfide (CS2)/chitosan ratio, and pH on total S content of ETB was examined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The total S content of ETB increased with increasing CS2/chitosan ratio and decreased with decreasing pH and increasing temperature (>60 °C) and heating time (at 60 °C). Spectroscopic analyses revealed the presence of thiol (-SH)/thione, disulfide (-S-S-), and sulfonate groups in ETB. The thiolation mechanism involves decomposition of dithiocarbamate groups, thereby forming thiourea crosslinks and trithiocarbonate, resulting in -SH oxidation to produce -S-S- crosslinks. The partially formed ETB crosslinks contribute to its acid stability and are thermodynamically feasible in adsorbing Cd and Cu. The S-containing functional groups added to chitinous wastes act as sorbents for metal remediation from acidic environments.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links