Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Silvanir, Lai SY, Asmawi AA, Chew KW, Ngan CL
    Bioresour Technol, 2024 Feb;393:130094.
    PMID: 38000640 DOI: 10.1016/j.biortech.2023.130094
    Microalgae is a sustainable alternative source to traditional proteins. Existing pretreatment methods for protein extraction from microalgae still lack scalability, are uneconomical and inefficient. Herein, high shear mixing (HSM) was applied to disrupt the rigid cell walls and was found to assist in protein release from microalgae. This study integrates HSM in liquid biphasic system with seven parameters being investigated on extraction efficiency (EE) and protein yield (Y). The highest EE and Y obtained are 96.83 ± 0.47 % and 40.98 ± 1.27 %, respectively, using 30% w/v K3PO4 salt, 60 % v/v alcohol, volume ratio of 1:1 and 0.5 % w/v biomass loading under shearing rate of 16,000 rpm for 1 min.
    Matched MeSH terms: Chlorella vulgaris*
  2. Chia SR, Mak KY, Khaw YJ, Suhaidi N, Chew KW, Show PL
    Bioresour Technol, 2019 Dec;294:122158.
    PMID: 31550634 DOI: 10.1016/j.biortech.2019.122158
    Microalgae are rich in valuable biomolecules and grow on non-arable land with rapid growth rate, which has a host of new possibility as alternative protein sources. In the present study, extraction of proteins from Chlorella vulgaris via an efficient technique, Liquid Triphasic Flotation (LTF) system, was studied. The optimized conditions in LTF system were 70% v/v of t-butanol, 40% w/v of salt solution, 0.5% w/v of biomass, pH 5.54, 1:1 of salt to t-butanol solution, and 10 min of air flotation time to attain 87.23% of protein recovery and 56.72% of separation efficiency. Besides, the study on recycling t-butanol has demonstrated that only one run was sufficient to maintain the performance of system. The efficiency of LTF in extracting protein has performed better than just Three Phase Partitioning (TPP) system. LTF system is hence an effective protein extraction and purification method with minimum operation unit and processing time.
    Matched MeSH terms: Chlorella vulgaris*
  3. Majid M, Chin BLF, Jawad ZA, Chai YH, Lam MK, Yusup S, et al.
    Bioresour Technol, 2021 Jun;329:124874.
    PMID: 33647605 DOI: 10.1016/j.biortech.2021.124874
    This study investigated on the co-pyrolysis of microalgae Chlorella vulgaris and high-density polyethylene (HDPE) waste mixtures which was performed with three types of catalysts, namely limestone (LS), HZSM-5 zeolite, and novel bi-functional LS/HZSM-5/LS. Kissinger-Kai (K-K) model-free method was coupled with Particle Swarm Optimization (PSO) model-fitting method using the thermogravimetric experimental data. A global sensitivity analysis was carried out using Latin Hypercube Sampling and rank transformation to assess the extent of impact of the input kinetic parameters on the output results. Furthermore, a thermodynamic analysis was performed to obtain parameters such as enthalpy change (ΔH), Gibb's free energy (ΔG), and entropy change (ΔS). The activation energy (EA) of the microalgae Chlorella vulgaris and HDPE binary mixture were found to be lower upon the addition of catalysts. Among the catalyst used, bi-functional LS/HZSM-5 catalyst exhibited the lowest EA (83.59 kJ/mol) and ΔH (78 kJ/mol) as compared to LS and HZSM-5 catalysts.
    Matched MeSH terms: Chlorella vulgaris*
  4. Khoo CG, Lam MK, Mohamed AR, Lee KT
    Environ Res, 2020 09;188:109828.
    PMID: 32798947 DOI: 10.1016/j.envres.2020.109828
    This study aims to produce hydrochar from high-ash low-lipid Chlorella vulgaris biomass via hydrothermal carbonization (HTC) process. The effects of hydrothermal temperature and retention time with respect to the physicochemical properties of hydrochar were studied in the range of 180-250 °C and 0.5-4 h, respectively. It was found that the hydrothermal temperature had resulted in a significant reduction of hydrochar yield as compared to the retention time. The raw microalgal biomass was successfully converted into an energy densified hydrochar via an optimized HTC reaction, with higher heating value (HHV) of 24.51 kJ/g, which was approximately two-times higher than that of raw biomass. In addition, the overall carbon recovery rate and energy yield were in the range of 53.2-86.4% and 46.9-76.6%, respectively. The high quality of the produced hydrochar was further supported by the plot of van Krevelen diagram and combustion behaviour analysis. Besides, the aqueous phase collected from HTC process could be further used as nutrients source to cultivate C. vulgaris, in which up to 70% of the biomass yield could be attained as compared to the control cultivation condition. The reusability of the aqueous phase collected from HTC process as an alternative nutrients source to cultivate microalgal indicated the feasibility and positive integration of HTC process in microalgal biofuel processing chain.
    Matched MeSH terms: Chlorella vulgaris*
  5. Azmi AAB, Chew KW, Chia WY, Mubashir M, Sankaran R, Lam MK, et al.
    Bioresour Technol, 2021 Aug;333:125197.
    PMID: 33930672 DOI: 10.1016/j.biortech.2021.125197
    The work aimed to study the potential in producing a system with high microalgal protein recovery and separation by utilizing a one-step or integrated downstream process. This in turn enables green biorefinery of protein, contributing to circular bioeconomy whereby less energy, labor, and cost are required for the process. By utilizing electric three phase partitioning flotation system, high protein recovery yield, R of 99.42 ± 0.52% and high separation efficiency, E of 52.72 ± 0.40% system was developed. Scaling up also showed high protein recovery yield with R value of 89.13 ± 1.56%. Total processing duration (extraction, separation, and purification) was also significantly reduced to 10 min. This system showed remarkable potential in reducing processing time, alternatively cost of production, benefiting microalgal downstream processing. Concisely, through this system, microalgal bioprocessing will no longer be complex allowing a wide array of potentials for further studies in this field.
    Matched MeSH terms: Chlorella vulgaris*
  6. Nawar A, Khoja AH, Akbar N, Ansari AA, Qayyum M, Ali E
    BMC Res Notes, 2017 Dec 02;10(1):666.
    PMID: 29197425 DOI: 10.1186/s13104-017-2995-9
    OBJECTIVE: A major factor in practical application of photobioreactors (PBR) is the adhesion of algal cells onto their inner walls. Optimized algal growth requires an adequate sunlight for the photosynthesis and cell growth. Limitation in light exposure adversely affects the algal biomass yield. The removal of the biofilm from PBR is a challenging and expansive task. This study was designed to develop an inexpensive technique to prevent adhesion of algal biofilm on tubular PBR to ensure high efficiency of light utilization. Rubber balls with surface projections were introduced into the reactor, to remove the adherent biofilm by physical abrasion technique.

    RESULTS: The floatation of spike balls created a turbulent flow, thereby inhibiting further biofilm formation. The parameters such as, specific growth rate and doubling time of the algae before introducing the balls were 0.451 day-1 and 1.5 days respectively. Visible biofilm impeding light transmission was formed by 15-20 days. The removal of the biofilm commenced immediately after the introduction of the spike balls with visibly reduced deposits in 3 days. This was also validated by enhance cell count (6.95 × 106 cells mL-1) in the medium. The employment of spike balls in PBR is an environmental friendly and economical method for the removal of biofilm.

    Matched MeSH terms: Chlorella vulgaris*
  7. Al-Humairi ST, Lee JGM, Harvey AP, Salman AD, Juzsakova T, Van B, et al.
    Sci Total Environ, 2023 Mar 01;862:160702.
    PMID: 36481155 DOI: 10.1016/j.scitotenv.2022.160702
    The purpose of this study was to examine the application of the mathematical model of drift flux to the experimental results of the effect of cationic trimethyl-ammonium bromide (CTAB)-aided continuous foam flotation harvesting on the lipid content in Chlorella vulgaris microalgae. An experiment was conducted to determine the effect of the operating conditions on the enrichment factor (EF) and percentage recovery efficiency (%RE), where the flow rates at the inlet and bottom outlet remained constant. Data for the binary system (without algae) and ternary system (with algae) in an equal-area foam column show that the EF decreases linearly with increasing initial CTAB concentrations ranging from 30 to 75 mg/L for three levels of the studied air volumetric flow rate range (1-3) L/min. The percentage harvesting efficiency increased with increasing initial CTAB concentration and air volumetric flow rate to 96 % in the binary systems and 94 % in the ternary systems. However, in the foam column with the riser used in the three systems, a lower volume of liquid foam in the upward outlet stream resulted in a lower RE% than that of the column without the riser. The objective function of EF for the system with algae increased when the initial CTAB concentration was increased from 30 to 45 mg/L in the foam column with a riser for all air flow rates, and after 45 mg/L, a sudden drop in the microalgae EF was observed. In the comparison between the foam column with and without the riser for the system with algae, the optimum EF was 145 for the design of the column with the riser and 139 for the column without the riser.
    Matched MeSH terms: Chlorella vulgaris*
  8. Tong CY, Li HZ, Derek CJC
    Lab Chip, 2023 Sep 13;23(18):4052-4066.
    PMID: 37609763 DOI: 10.1039/d3lc00415e
    In attached microalgae cultivation systems, cell detachment due to fluid hydrodynamic flow is not a subject matter that is commonly looked into. However, this phenomenon is of great relevance to optimizing the operating parameters of algae cultivation and feasible reactor design. Hence, this current work miniaturizes traditional benchtop assays into a microfluidic platform to study the cell detachment of green microalgae, Chlorella vulgaris, from porous substrates during its early cultivation stage under precisely controlled conditions. As revealed by time lapse microscopy, an increase in bulk flow velocity facilitated nutrient transport but also triggered cell detachment events. At a flow rate of 1000 μL min-1 of growth medium for 120 min, the algal cell coverage was up to 5% lower than those at 5 μL min-1 and 50 μL min-1. In static seeding, the evolution of attached cell resistance toward liquid flows was dependent on hydrodynamic zones. The center zone of the microchannel was shown to be a "comfortable zone" of the attached cells to sequester nutrients effectively at lower medium flow rates but there was a profile transition where outlet zones favored cell attachment the most at higher flow rates (1.13 times higher than the center zone for 1000 μL min-1). Besides, computational fluid dynamics (CFD) simulations illustrated that the focusing band varied between cross-sections and depths, while the streamline was the least concentrated along the side walls and bottom plane of the microfluidic devices. It was intriguing to learn that cell detachment was not primarily happening along the symmetry streamline. Insight gained from this study could be further applied in the optimization of operating conditions of attached cultivation systems whilst preserving laminar flow conditions.
    Matched MeSH terms: Chlorella vulgaris*
  9. Chew KW, Chia SR, Show PL, Ling TC, Arya SS, Chang JS
    Bioresour Technol, 2018 Nov;267:356-362.
    PMID: 30029182 DOI: 10.1016/j.biortech.2018.07.069
    The present study investigates the prospective of substituting inorganic medium with organic food waste compost medium as a nutrient supplement for the cultivation of Chlorella vulgaris FSP-E. Various percentages of compost mixtures were replaced in the inorganic medium to compare the algal growth and biochemical composition. The use of 25% compost mixture combination was found to yield higher biomass concentration (11.1%) and better lipid (10.1%) and protein (2.0%) content compared with microalgae cultivation in fully inorganic medium. These results exhibited the potential of combining the inorganic medium with organic food waste compost medium as an effective way to reduce the cultivation cost of microalgae and to increase the biochemical content in the cultivated microalgae.
    Matched MeSH terms: Chlorella vulgaris*
  10. Bui-Xuan D, Tang DYY, Chew KW, Nguyen TDP, Le Ho H, Tran TNT, et al.
    J Biotechnol, 2022 Jan 10;343:120-127.
    PMID: 34896159 DOI: 10.1016/j.jbiotec.2021.12.002
    Co-culture of microalgae and microorganisms, supported with the resulting synergistic effects, can be used for wastewater treatment, biomass production, agricultural applications and etc. Therefore, this study aimed to explore the role of Bacillus subtilis (B. subtilis) in tolerance against the harsh environment of seafood wastewater, at which these microalgal-bacterial flocs were formed by microalgae cultivation. In this present study, B. subtilis isolated from the cultivation medium of Chlorella vulgaris and exposed to different salinity (0.1-4% w/v sodium chloride) and various pH range to determine the tolerant ability and biofilm formation. Interestingly, this bacteria strain that isolated from microalgae cultivation medium showed the intense viability in the salt concentration exceeding up to 4% (w/v) NaCl but demonstrated the decrease in cell division as environmental culture undergoing over pH 10. Cell viability was recorded higher than 71% and 92% for B. subtilis inoculum in media with salt concentration greater than 20 gL-1 and external pH 6.5-9, respectively. This showed that B. subtilis isolated from microalgal-bacteria cocultivation exhibited its tolerant ability to survive in the extremely harsh conditions and thus, mitigating the stresses due to salinity and pH.
    Matched MeSH terms: Chlorella vulgaris*
  11. Abu Sepian NR, Mat Yasin NH, Zainol N, Rushan NH, Ahmad AL
    Environ Technol, 2019 Apr;40(9):1110-1117.
    PMID: 29161985 DOI: 10.1080/09593330.2017.1408691
    The immobilisation of Chlorella vulgaris 211/11B entrapped in combinations of natural matrices to simplify the harvesting process was demonstrated in this study. Three combinations of matrices composed of calcium alginate (CA) and sodium alginate (SA), sodium carboxymethyl cellulose (CMC) and SA, and mixed matrices (SA, CA, and CMC) were investigated. The number of cells grown for each immobilised matrix to microalgae volume ratios (0.2:1-1:1) were explored and compared with using SA solely as a control. The optimum volume ratios obtained were 1:1 for SA, 0.3:1 for CA and SA, 1:1 for CMC and SA, and 0.3:1 for mixed matrices. The immobilised microalgae of mixed matrices exhibited the highest number of cells with 1.72 × 109 cells/mL at day 10 and 30.43% of oil extraction yield followed by CA and SA (24.29%), CMC and SA (13.00%), and SA (6.71%). Combining SA, CA, and CMC had formed a suitable structure which improved the growth of C. vulgaris and increased the lipid production compared to the immobilisation using single matrix. Besides, the fatty acids profile of the oil extracted indicates a high potential for biodiesel production.
    Matched MeSH terms: Chlorella vulgaris*
  12. Rawindran H, Syed R, Alangari A, Khoo KS, Lim JW, Sahrin NT, et al.
    Environ Res, 2023 Apr 01;222:115352.
    PMID: 36716802 DOI: 10.1016/j.envres.2023.115352
    The capacity to maximize the proliferation of microalgal cells by means of topologically textured organic solid surfaces under various pH gave rise to the fundamental biophysical analysis of cell-surface attachment in this study. The substrate used in analysis was palm kernel expeller (PKE) in which the microalgal cells had adhered onto its surface. The findings elucidated the relevance of surface properties in terms of surface wettability and surface energy in relation to the attached microalgal growth with pH as the limiting factor. The increase in hydrophobicity of PKE-microalgae attachment was able to facilitate the formation of biofilm better. The pH 5 and pH 11 were found to be the conditions with highest and lowest microalgal growths, respectively, which were in tandem with the highest contact angle value at pH 5 and conversely for pH 11. The work of attachment (Wcs) had supported the derived model with positive values being attained for all the pH conditions, corroborating the thermodynamic feasibility. Finally, this study had unveiled the mechanism of microalgal attachment onto the surface of PKE using the aid of extracellular polymeric surfaces (EPS) from microalgae. Also, the hydrophobic nature of PKE enabled excellent attachment alongside with nutrients for microalgae to grow and from layer-by-layer (LbL) assembly. This assembly was then isolated using organosolv method by means of biphasic solvents, namely, methanol and chloroform, to induce detachment.
    Matched MeSH terms: Chlorella vulgaris*
  13. Ao S, Rashid U, Shi D, Rokhum SL, Tg Thuy L, Awad Alahmadi T, et al.
    Environ Res, 2024 Mar 15;245:118025.
    PMID: 38151153 DOI: 10.1016/j.envres.2023.118025
    The study investigates the potential of utilizing banana trunk-derived porous activated biochar enriched with SO3H- as a catalyst for eco-friendly biodiesel production from the microalga Chlorella vulgaris. An extensive analysis, employing advanced techniques such as XRD, FTIR, TGA, XPS, NH3-TPD, BET, SEM-EDX, and TEM, was conducted to elucidate the physicochemical properties of BT-SO3H catalysts. The synthesized catalyst demonstrated its efficiency in converting the total lipids of Chlorella vulgaris into biodiesel, with varying concentrations of 3%, 5%, and 7%. Notably, using a 5% BT-SO3H concentration resulted in remarkably higher biodiesel production about 58.29%. Additionally, the fatty acid profile of C. vulgaris biodiesel indicated that C16:0 was the predominant fatty acid at 24.31%, followed by C18:1 (19.68%), C18:3 (11.45%), and C16:1 (7.56%). Furthermore, the biodiesel produced via 5% BT-SO3H was estimated to have higher levels of saturated fatty acids (SFAs) at 34.28%, monounsaturated fatty acids (MUFAs) at 30.70%, and polyunsaturated fatty acids (PUFAs) at 24.24%. These findings highlight the promising potential of BT-SO3H catalysts for efficient and environmentally friendly biodiesel production from microalgal species.
    Matched MeSH terms: Chlorella vulgaris*
  14. Peter AP, Chew KW, Koyande AK, Yuk-Heng S, Ting HY, Rajendran S, et al.
    Bioresour Technol, 2021 Dec;341:125892.
    PMID: 34523555 DOI: 10.1016/j.biortech.2021.125892
    Continuous automation of conventional industrial operations with smart technology have drawn significant attention. Firstly, the study investigates on optimizing the proportion of industrial biscuit processing waste powder, (B) substituted into BG-11 as a source of cultivation medium for the growth of C. vulgaris. Various percentages of industrial biscuit processing waste powder, (B) were substituted in the inorganic medium to analyse the algal growth and biochemical composition. The use of 40B combination was found to yield highest biomass concentration (4.11 g/L), lipid (260.44 mg/g), protein (263.93 mg/g), and carbohydrate (418.99 mg/g) content compared with all the other culture ratio combination. Secondly, the exploitation of colour acquisition was performed onto C. vulgaris growth phases, and a novel photo-to-biomass concentration estimation was conducted via image processing for three different colour model pixels. Based on linear regression analysis the red, green, blue (RGB) colour model can interpret its colour variance precisely.
    Matched MeSH terms: Chlorella vulgaris*
  15. Mohd-Sahib AA, Lim JW, Lam MK, Uemura Y, Isa MH, Ho CD, et al.
    Bioresour Technol, 2017 Sep;239:127-136.
    PMID: 28501685 DOI: 10.1016/j.biortech.2017.04.118
    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability.
    Matched MeSH terms: Chlorella vulgaris*
  16. Nguyen TDP, Le TVA, Show PL, Nguyen TT, Tran MH, Tran TNT, et al.
    Bioresour Technol, 2019 Jan;272:34-39.
    PMID: 30308405 DOI: 10.1016/j.biortech.2018.09.146
    Microalgal bacterial flocs can be a promising approach for microalgae harvesting and wastewater treatment. The present study provides an insight on the bioflocs formation to enhance harvesting of Chlorella vulgaris and the removal of nutrients from seafood wastewater effluent. The results showed that the untreated seafood wastewater was the optimal culture medium for the cultivation and bioflocculation of C. vulgaris, with the flocculating activity of 92.0 ± 6.0%, total suspended solids removal of 93.0 ± 5.5%, and nutrient removal of 88.0 ± 2.2%. The bioflocs collected under this optimal condition contained dry matter of 107.2 ± 5.6 g·L-1 and chlorophyll content of 25.5 ± 0.2 mg·L-1. The results were promising when compared to those obtained from the auto-flocculation process that induced by the addition of calcium chloride and pH adjustment. Additionally, bacteria present in the wastewater aided to promote the formation of bioflocculation process.
    Matched MeSH terms: Chlorella vulgaris/metabolism
  17. Fong MJB, Loy ACM, Chin BLF, Lam MK, Yusup S, Jawad ZA
    Bioresour Technol, 2019 Oct;289:121689.
    PMID: 31252316 DOI: 10.1016/j.biortech.2019.121689
    In the present study, catalytic pyrolysis of Chlorella vulgaris biomass was conducted to analyse the kinetic and thermodynamic performances through thermogravimetric approach. HZSM-5 zeolite, limestone (LS), bifunctional HZSM-5/LS were used as catalysts and the experiments were heated from 50 to 900 °C at heating rates of 10-100 °C/min. Iso-conversional model-free methods such as Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), Starink's, and Vyazovkin (V) were employed to evaluate the kinetic parameters meanwhile the thermodynamic parameters were determined by using FWO and KAS methods. The calculated EA values of non-catalytic and catalytic pyrolysis of HZSM-5 zeolite, LS, and bifunctional HZSM-5/LS were determined to be in the range of 156.16-158.10 kJ/mol, 145.26-147.84 kJ/mol, 138.81-142.06 kJ/mol, and 133.26 kJ/mol respectively. The results have shown that catalytic pyrolysis with the presence of bifunctional HZSM-5/LS resulted to a lower average EA and ΔH compared to HZSM-5, and LS which indicated less energy requirement in the process.
    Matched MeSH terms: Chlorella vulgaris/metabolism*
  18. Nuhma MJ, Alias H, Tahir M, Jazie AA
    Molecules, 2022 Oct 25;27(21).
    PMID: 36364078 DOI: 10.3390/molecules27217251
    Despite the extensive research into the catalytic uses of zeolite-based catalysts, these catalysts have a limited useful lifetime because of the deactivating effect of coke production. This study looks at the use of Cerium (Ce) loaded HZSM-5 zeolite catalysts in the hydrocarbon and oxygenated chemical conversion from Chlorella Vulgaris microalgae crude oil. Characterization of structure, morphology, and crystallinity was performed after the catalysts were manufactured using the impregnation technique. Soxhlet extraction was carried out to extract the crude oil of microalgae. Transesterification reaction was used to produce algal hydrolyzed oil (HO), and the resulting HO was put to use in a batch reactor at 300 °C, 1000 rpm, 7 bars of nitrogen pressure, a catalyst to the algal HO ratio of 15% (wt. %), and a retention time of 6 h. To determine which Ce-loaded HZSM-5 catalysts would be most effective in converting algal HO into non-oxygenated molecules (hydrocarbons), we conducted a series of tests. Liquid product characteristics were analyzed for elemental composition, higher heating value (HHV), atomic ratios of O/C and H/C, and degree of deoxygenation (DOD%). Results were categorized into three groups: product yield, chemical composition, and carbon number distribution. When Cerium was added to HZSM-5 zeolite at varying loading percentages, the zeolite's acid sites became more effective in facilitating the algal HO conversion. The results showed that 10%Ce/HZSM-5 had the greatest conversion of the algal HO, the yield of hydrocarbons, HHV, and DOD% (98.2%, 30%, 34.05 MJ/Kg, and 51.44%, respectively) among all the synthesized catalysts in this research. In conclusion, the physical changes seen in the textural characteristics may be attributed to Cerium-loading on the parent HZSM-5; nevertheless, there is no direct association between the physical features and the hydrocarbons yield (%). The primary impact of Cerium alteration of the parent HZSM-5 zeolite was to change the acidic sites required to boost the conversion (%) of the algal HO in the catalytic deoxygenation process, which in turn increased the hydrocarbons yield (%), which in turn increased the HHV and DOD%.
    Matched MeSH terms: Chlorella vulgaris*
  19. Nuhma MJ, Alias H, Tahir M, Jazie AA
    Molecules, 2022 Nov 18;27(22).
    PMID: 36432121 DOI: 10.3390/molecules27228018
    Due to their high lipid content, microalgae are one of the most significant sources of green hydrocarbons, which might help lessen the world's need for fossil fuels. Many zeolite-based catalysts are quickly deactivated by coke production and have a short lifetime. In this study, a bimetallic Lanthanum-Cerium (La-Ce)-modified HZSM-5 zeolite catalyst was synthesized through an impregnation method and was tested for the conversion of hydrolyzed oil into oxygen-free hydrocarbon fuels of high energy content. Initially, hydrolyzed oil (HO), the byproduct of the transesterification process, was obtained by the reaction of crude oil derived from Chlorella vulgaris microalgae and a methanol. Various catalysts were produced, screened, and evaluated for their ability to convert algal HO into hydrocarbons and other valuable compounds in a batch reactor. The performance of HZSM-5 was systematically tested in view of La-Ce loaded on conversion, yield, and selectivity. NH3-TPD analysis showed that the total acidity of the La-Ce-modified zeolites was lower than that of the pure HZSM-5 catalyst. TGA testing revealed that including the rare earth elements La and Ce in the HZSM-5 catalyst lowered the catalyst propensity for producing coke deposits. The acid sites necessary for algal HO conversion were improved by putting La and Ce into HZSM-5 zeolite at various loading percentages. The maximum hydrocarbon yield (42.963%), the highest HHV (34.362 MJ/Kg), and the highest DOD% (62.191%) were all achieved by the (7.5%La-2.5%Ce)/HZSM-5 catalyst, which was synthesized in this work. For comparison, the hydrocarbon yield for the parent HZSM-5 was 21.838%, the HHV was (33.230 MJ/Kg), and the DOD% was 44.235%. In conclusion, La and Ce-loading on the parent HZSM-5 may be responsible for the observed alterations in textural properties; nevertheless, there is no clear correlation between the physical features and the hydrocarbon yield (%). The principal effect of La and Ce modifying the parent HZSM-5 zeolite was to modify the acidic sites needed to enhance the conversion (%) of the algal HO during the catalytic deoxygenation process, which in turn raised the hydrocarbon yield (%) and increased the HHV and DOD%.
    Matched MeSH terms: Chlorella vulgaris*
  20. Raji AA, Alaba PA, Yusuf H, Abu Bakar NH, Mohd Taufek N, Muin H, et al.
    Res Vet Sci, 2018 Aug;119:67-75.
    PMID: 29864632 DOI: 10.1016/j.rvsc.2018.05.013
    This study explored fishmeal replacement with two freshwater microalgae: Spirulina Platensis and Chlorella vulgaris in African catfish (Clarias gariepinus) diet. The effect of inclusion of the two microalgae on biomarkers of oxidative stress, haematological parameters, enzyme activities and growth performance were investigated. The juvenile fish were given 3 distinct treatments with isonitrogenous (35.01-36.57%) and isoenergetic (417.24-422.27 Kcal 100 g-1) diets containing 50% S. platensis (50SP), 75% S. platensis (75SP), 50% C. vulgaris (50CL), 75% C. vulgaris (75CL) and 100% fishmeal (100% FM) was used as the control diet. The result shows that all the diets substituted with both S. platensis, and C. vulgaris boosted the growth performance based on specific growth rate (SGR) and body weight gain (BDWG) when compared with the control diet. The feed conversion ratio (FCR) and protein efficiency ratio (PER) was significantly influenced by all the supplementations. The haematological analysis of the fish shows a significant increase in the value of red and white blood cells upon supplementation with 50SP and 50CL but decrease slightly when increased to 75SP and 75CL. Furthermore, the value of haematocrit and haemoglobin also increased upon supplementation with 50SP and 50CL but decrease slightly when increased to 75SP and 75CL. The white blood cell (WBC), red blood cell (RBC) increased, while total cholesterol (TCL), and Plasma glucose levels decreased significantly upon supplementation of algae. This is a clear indication that S. platensis and C. vulgaris are a promising replacement for fishmeal, which is a source protein in the C. gariepinus diet.
    Matched MeSH terms: Chlorella vulgaris/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links