Affiliations 

  • 1 Department of Bioprocess Engineering, Faculty of Chemical Engineering, c/o Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • 2 Department of Bioprocess Engineering, Faculty of Chemical Engineering, c/o Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. Electronic address: ani@cheme.utm.my
Bioresour Technol, 2014 Dec;174:311-5.
PMID: 25443622 DOI: 10.1016/j.biortech.2014.10.015

Abstract

Biodiesel with improved yield was produced from microalgae biomass under simultaneous cooling and microwave heating (SCMH). Nannochloropsis sp. and Tetraselmis sp. which were known to contain higher lipid species were used. The yield obtained using this novel technique was compared with the conventional heating (CH) and microwave heating (MWH) as the control method. The results revealed that the yields obtained using the novel SCMH were higher; Nannochloropsis sp. (83.33%) and Tetraselmis sp. (77.14%) than the control methods. Maximum yields were obtained using SCMH when the microwave was set at 50°C, 800W, 16h of reaction with simultaneous cooling at 15°C; and water content and lipid to methanol ratio in reaction mixture was kept to 0 and 1:12 respectively. GC analysis depicted that the biodiesel produced from this technique has lower carbon components (<19 C) and has both reasonable CN and IV reflecting good ignition and lubricating properties.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.