Displaying all 3 publications

Abstract:
Sort:
  1. Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10504-10514.
    PMID: 28988379 DOI: 10.1007/s11356-017-0313-7
    The control of filariasis vectors has been enhanced in several areas, but there are main challenges, including increasing resistance to insecticides and lack of cheap and eco-friendly products. The toxicity of iron (Fe0) and iron oxide (Fe2O3) nanoparticles has been scarcely investigated yet. We studied the larvicidal and pupicidal activity of Fe0 and Fe2O3 nanoparticles against Culex quinquefasciatus. Fe0 and Fe2O3 nanoparticles produced by green (using a Ficus natalensis aqueous extract) and chemical nanosynthesis, respectively, were analyzed by UV-Vis spectrophotometry, FT-IR spectroscopy, XRD analysis, SEM, and EDX assays. In larvicidal and pupicidal experiments on Cx. quinquefasciatus, LC50 of Fe0 nanoparticles ranged from 20.9 (I instar larvae) to 43.7 ppm (pupae) and from 4.5 (I) to 22.1 ppm (pupae) for Fe2O3 nanoparticles synthesized chemically. Furthermore, the predation efficiency of the guppy fish, Poecilia reticulata, after a single treatment with sub-lethal doses of Fe0 and Fe2O3 nanoparticles was magnified. Overall, this work provides new insights about the toxicity of Fe0 and Fe2O3 nanoparticles against mosquito vectors; we suggested that green and chemical fabricated nano-iron may be considered to develop novel and effective pesticides.
  2. Murugan K, Anitha J, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, et al.
    Ecotoxicol Environ Saf, 2016 Oct;132:318-28.
    PMID: 27344400 DOI: 10.1016/j.ecoenv.2016.06.021
    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments.
  3. Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, et al.
    Parasitol Res, 2017 Feb;116(2):495-502.
    PMID: 27815736 DOI: 10.1007/s00436-016-5310-0
    A main challenge in parasitology is the development of reliable tools to prevent or treat mosquito-borne diseases. We investigated the toxicity of magnetic nanoparticles (MNP) produced by Magnetospirillum gryphiswaldense (strain MSR-1) on chloroquine-resistant (CQ-r) and sensitive (CQ-s) Plasmodium falciparum, dengue virus (DEN-2), and two of their main vectors, Anopheles stephensi and Aedes aegypti, respectively. MNP were studied by Fourier-transform infrared spectroscopy and transmission electron microscopy. They were toxic to larvae and pupae of An. stephensi, LC50 ranged from 2.563 ppm (1st instar larva) to 6.430 ppm (pupa), and Ae. aegypti, LC50 ranged from 3.231 ppm (1st instar larva) to 7.545 ppm (pupa). MNP IC50 on P. falciparum were 83.32 μg ml(-1) (CQ-s) and 87.47 μg ml(-1) (CQ-r). However, the in vivo efficacy of MNP on Plasmodium berghei was low if compared to CQ-based treatments. Moderate cytotoxicity was detected on Vero cells post-treatment with MNP doses lower than 4 μg ml(-1). MNP evaluated at 2-8 μg ml(-1) inhibited DEN-2 replication inhibiting the expression of the envelope (E) protein. In conclusion, our findings represent the first report about the use of MNP in medical and veterinary entomology, proposing them as suitable materials to develop reliable tools to combat mosquito-borne diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links