Iron (III) oxide, a stable semiconductor with versatile applications, was synthesized alongside Sn-doped Fe2O3 (Sn-Fe2O3) using the sol-gel technique. Characterization via X-ray diffraction, field-emission scanning electron microscopy, and UV-visible spectroscopy confirmed the presence of α- and γ-Fe2O3 phases in the synthesized powders. Incorporation of the dopant reduced the initial band gap energy of Fe2O3 (2.2 eV) by approximately 0.1 eV. To evaluate photocatalytic performance, Fe2O3 and Sn-Fe2O3 were tested for decolorization efficiency of a methyl orange solution. Results revealed the 5 wt% Sn-doped catalyst as optimal, achieving complete degradation of methyl orange within 120 min under simulated solar light. The addition of small amounts of Sn effectively reduced the Fe2O3 band gap and significantly enhanced photocatalytic performance. Investigation of pH and dye concentration impact on photocatalytic degradation revealed superior activity under acidic conditions compared to alkaline. Furthermore, maintaining a moderate concentration of methyl orange (10 ppm) ensured optimum photocatalytic activity.
Perovskite solar cells (PSC) have developed rapidly since the past decade with the aim to produce highly efficient photovoltaic technology at a low cost. Recently, physical and chemical defects at the buried interface of PSC including vacancies, impurities, lattice strain, and voids are identified as the next formidable hurdle to the further advancement of the performance of devices. The presence of these defects has unfavorably impacted many optoelectronic properties in the PSC, such as band alignment, charge extraction/recombination dynamics, ion migration behavior, and hydrophobicity. Herein, a broad but critical discussion on various essential aspects related to defects at the buried interface is provided. In particular, the defects existing at the surface of the underlying charge transporting layer (CTL) and the bottom surface of the perovskite film are initially elaborated. In situ and ex situ characterization approaches adopted to unveil hidden defects are elucidated to determine their influence on the efficiency, operational stability, and photocurrent-voltage hysteresis of PSC. A myriad of innovative strategies including defect management in CTL, the introduction of passivation materials, strain engineering, and morphological control used to address defects are also systematically elucidated to catalyze the further development of more efficient, reliable, and commercially viable photovoltaic devices.
The development of semiconductor heterojunctions is a promising and yet challenging strategy to boost the performance in photoelectrochemical (PEC) water splitting. This paper describes the fabrication of a heterojunction photoanode by coupling α-Fe2O3 and g-C3N4via aerosol-assisted chemical vapour deposition (AACVD) followed by spin coating and air annealing. Enhanced PEC performance and stability are observed for the α-Fe2O3/g-C3N4 heterojunction photoanode in comparison to pristine α-Fe2O3 and the reason is systematically discussed in this paper. Most importantly, the fabricated α-Fe2O3/g-C3N4 film shows impressive stability, retaining more than 90% of the initial current over 12 h operating time. The excellent stability of the heterojunction photoanode is achieved due to the unique nanoflake structure of α-Fe2O3 induced by AACVD. This nanostructure promotes good adhesion with the g-C3N4 particles, as the particles tend to be trapped within the α-Fe2O3 valleys and eventually create strong and large interfacial contacts. This leads to improved separation of charge carriers at the α-Fe2O3/g-C3N4 interface and suppression of charge recombination in the photoanode, which are confirmed by the transient decay time, charge transfer efficiency and electrochemical impedance analysis. Our findings demonstrate the importance of nanostructure engineering for developing heterojunction structures with efficient charge transfer dynamics.
Defect engineering is increasingly recognized as a viable strategy for boosting the performance of photoelectrochemical (PEC) water splitting using metal oxide-based photoelectrodes. However, previously developed methods for generating point defects associated with oxygen vacancies are rather time-consuming. Herein, high density oxygen deficient α-Fe2O3 with the dominant (110) crystal plane is developed in a very short timescale of 10 minutes by employing aerosol-assisted chemical vapor deposition and pure nitrogen as a gas carrier. The oxygen-defective film exhibits almost 8 times higher photocurrent density compared to a hematite photoanode with a low concentration of oxygen vacancies which is prepared in purified air. The existence of oxygen vacancies improves light absorption ability, accelerates charge transport in the bulk of films, and promotes charge separation at the electrolyte/semiconductor interface. DFT simulations verify that oxygen-defective hematite has a narrow bandgap, electron-hole trapped centre, and strong adsorption energy of water molecules compared to pristine hematite. This strategy might bring PEC technology another step further towards large-scale fabrication for future commercialization.