Displaying all 2 publications

Abstract:
Sort:
  1. Yildirim O, Talo M, Ay B, Baloglu UB, Aydin G, Acharya UR
    Comput Biol Med, 2019 10;113:103387.
    PMID: 31421276 DOI: 10.1016/j.compbiomed.2019.103387
    In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis.
  2. Ay B, Yildirim O, Talo M, Baloglu UB, Aydin G, Puthankattil SD, et al.
    J Med Syst, 2019 May 28;43(7):205.
    PMID: 31139932 DOI: 10.1007/s10916-019-1345-y
    Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links