Displaying publications 1 - 20 of 86 in total

Abstract:
Sort:
  1. Acharya UR, Mookiah MR, Koh JE, Tan JH, Noronha K, Bhandary SV, et al.
    Comput. Biol. Med., 2016 06 01;73:131-40.
    PMID: 27107676 DOI: 10.1016/j.compbiomed.2016.04.009
    Age-related Macular Degeneration (AMD) affects the central vision of aged people. It can be diagnosed due to the presence of drusen, Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in the fundus images. It is labor intensive and time-consuming for the ophthalmologists to screen these images. An automated digital fundus photography based screening system can overcome these drawbacks. Such a safe, non-contact and cost-effective platform can be used as a screening system for dry AMD. In this paper, we are proposing a novel algorithm using Radon Transform (RT), Discrete Wavelet Transform (DWT) coupled with Locality Sensitive Discriminant Analysis (LSDA) for automated diagnosis of AMD. First the image is subjected to RT followed by DWT. The extracted features are subjected to dimension reduction using LSDA and ranked using t-test. The performance of various supervised classifiers namely Decision Tree (DT), Support Vector Machine (SVM), Probabilistic Neural Network (PNN) and k-Nearest Neighbor (k-NN) are compared to automatically discriminate to normal and AMD classes using ranked LSDA components. The proposed approach is evaluated using private and public datasets such as ARIA and STARE. The highest classification accuracy of 99.49%, 96.89% and 100% are reported for private, ARIA and STARE datasets. Also, AMD index is devised using two LSDA components to distinguish two classes accurately. Hence, this proposed system can be extended for mass AMD screening.
  2. Algamal ZY, Lee MH
    Comput. Biol. Med., 2015 Dec 1;67:136-45.
    PMID: 26520484 DOI: 10.1016/j.compbiomed.2015.10.008
    Cancer classification and gene selection in high-dimensional data have been popular research topics in genetics and molecular biology. Recently, adaptive regularized logistic regression using the elastic net regularization, which is called the adaptive elastic net, has been successfully applied in high-dimensional cancer classification to tackle both estimating the gene coefficients and performing gene selection simultaneously. The adaptive elastic net originally used elastic net estimates as the initial weight, however, using this weight may not be preferable for certain reasons: First, the elastic net estimator is biased in selecting genes. Second, it does not perform well when the pairwise correlations between variables are not high. Adjusted adaptive regularized logistic regression (AAElastic) is proposed to address these issues and encourage grouping effects simultaneously. The real data results indicate that AAElastic is significantly consistent in selecting genes compared to the other three competitor regularization methods. Additionally, the classification performance of AAElastic is comparable to the adaptive elastic net and better than other regularization methods. Thus, we can conclude that AAElastic is a reliable adaptive regularized logistic regression method in the field of high-dimensional cancer classification.
  3. Sudarshan VK, Mookiah MR, Acharya UR, Chandran V, Molinari F, Fujita H, et al.
    Comput. Biol. Med., 2016 Feb 1;69:97-111.
    PMID: 26761591 DOI: 10.1016/j.compbiomed.2015.12.006
    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images.
  4. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput. Biol. Med., 2016 Apr 1;71:231-40.
    PMID: 26898671 DOI: 10.1016/j.compbiomed.2016.01.028
    Cross-sectional view echocardiography is an efficient non-invasive diagnostic tool for characterizing Myocardial Infarction (MI) and stages of expansion leading to heart failure. An automated computer-aided technique of cross-sectional echocardiography feature assessment can aid clinicians in early and more reliable detection of MI patients before subsequent catastrophic post-MI medical conditions. Therefore, this paper proposes a novel Myocardial Infarction Index (MII) to discriminate infarcted and normal myocardium using features extracted from apical cross-sectional views of echocardiograms. The cross-sectional view of normal and MI echocardiography images are represented as textons using Maximum Responses (MR8) filter banks. Fractal Dimension (FD), Higher-Order Statistics (HOS), Hu's moments, Gabor Transform features, Fuzzy Entropy (FEnt), Energy, Local binary Pattern (LBP), Renyi's Entropy (REnt), Shannon's Entropy (ShEnt), and Kapur's Entropy (KEnt) features are extracted from textons. These features are ranked using t-test and fuzzy Max-Relevancy and Min-Redundancy (mRMR) ranking methods. Then, combinations of highly ranked features are used in the formulation and development of an integrated MII. This calculated novel MII is used to accurately and quickly detect infarcted myocardium by using one numerical value. Also, the highly ranked features are subjected to classification using different classifiers for the characterization of normal and MI LV ultrasound images using a minimum number of features. Our current technique is able to characterize MI with an average accuracy of 94.37%, sensitivity of 91.25% and specificity of 97.50% with 8 apical four chambers view features extracted from only single frame per patient making this a more reliable and accurate classification.
  5. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput. Biol. Med., 2016 Apr 1;71:241-51.
    PMID: 26897481 DOI: 10.1016/j.compbiomed.2016.01.029
    Early expansion of infarcted zone after Acute Myocardial Infarction (AMI) has serious short and long-term consequences and contributes to increased mortality. Thus, identification of moderate and severe phases of AMI before leading to other catastrophic post-MI medical condition is most important for aggressive treatment and management. Advanced image processing techniques together with robust classifier using two-dimensional (2D) echocardiograms may aid for automated classification of the extent of infarcted myocardium. Therefore, this paper proposes novel algorithms namely Curvelet Transform (CT) and Local Configuration Pattern (LCP) for an automated detection of normal, moderately infarcted and severely infarcted myocardium using 2D echocardiograms. The methodology extracts the LCP features from CT coefficients of echocardiograms. The obtained features are subjected to Marginal Fisher Analysis (MFA) dimensionality reduction technique followed by fuzzy entropy based ranking method. Different classifiers are used to differentiate ranked features into three classes normal, moderate and severely infarcted based on the extent of damage to myocardium. The developed algorithm has achieved an accuracy of 98.99%, sensitivity of 98.48% and specificity of 100% for Support Vector Machine (SVM) classifier using only six features. Furthermore, we have developed an integrated index called Myocardial Infarction Risk Index (MIRI) to detect the normal, moderately and severely infarcted myocardium using a single number. The proposed system may aid the clinicians in faster identification and quantification of the extent of infarcted myocardium using 2D echocardiogram. This system may also aid in identifying the person at risk of developing heart failure based on the extent of infarcted myocardium.
  6. Mookiah MR, Acharya UR, Fujita H, Tan JH, Chua CK, Bhandary SV, et al.
    Comput. Biol. Med., 2015 Nov 1;66:295-315.
    PMID: 26453760 DOI: 10.1016/j.compbiomed.2015.09.012
    Diabetic Macular Edema (DME) is caused by accumulation of extracellular fluid from hyperpermeable capillaries within the macula. DME is one of the leading causes of blindness among Diabetes Mellitus (DM) patients. Early detection followed by laser photocoagulation can save the visual loss. This review discusses various imaging modalities viz. biomicroscopy, Fluorescein Angiography (FA), Optical Coherence Tomography (OCT) and colour fundus photographs used for diagnosis of DME. Various automated DME grading systems using retinal fundus images, associated retinal image processing techniques for fovea, exudate detection and segmentation are presented. We have also compared various imaging modalities and automated screening methods used for DME grading. The reviewed literature indicates that FA and OCT identify DME related changes accurately. FA is an invasive method, which uses fluorescein dye, and OCT is an expensive imaging method compared to fundus photographs. Moreover, using fundus images DME can be identified and automated. DME grading algorithms can be implemented for telescreening. Hence, fundus imaging based DME grading is more suitable and affordable method compared to biomicroscopy, FA, and OCT modalities.
  7. Habibi N, Norouzi A, Mohd Hashim SZ, Shamsir MS, Samian R
    Comput. Biol. Med., 2015 Nov 1;66:330-6.
    PMID: 26476414 DOI: 10.1016/j.compbiomed.2015.09.015
    Recombinant protein overexpression, an important biotechnological process, is ruled by complex biological rules which are mostly unknown, is in need of an intelligent algorithm so as to avoid resource-intensive lab-based trial and error experiments in order to determine the expression level of the recombinant protein. The purpose of this study is to propose a predictive model to estimate the level of recombinant protein overexpression for the first time in the literature using a machine learning approach based on the sequence, expression vector, and expression host. The expression host was confined to Escherichia coli which is the most popular bacterial host to overexpress recombinant proteins. To provide a handle to the problem, the overexpression level was categorized as low, medium and high. A set of features which were likely to affect the overexpression level was generated based on the known facts (e.g. gene length) and knowledge gathered from related literature. Then, a representative sub-set of features generated in the previous objective was determined using feature selection techniques. Finally a predictive model was developed using random forest classifier which was able to adequately classify the multi-class imbalanced small dataset constructed. The result showed that the predictive model provided a promising accuracy of 80% on average, in estimating the overexpression level of a recombinant protein.
  8. Ahmad M, Jung LT, Bhuiyan MA
    Comput. Biol. Med., 2016 Feb 1;69:144-51.
    PMID: 26773936 DOI: 10.1016/j.compbiomed.2015.12.017
    A coding measure scheme numerically translates the DNA sequence to a time domain signal for protein coding regions identification. A number of coding measure schemes based on numerology, geometry, fixed mapping, statistical characteristics and chemical attributes of nucleotides have been proposed in recent decades. Such coding measure schemes lack the biologically meaningful aspects of nucleotide data and hence do not significantly discriminate coding regions from non-coding regions. This paper presents a novel fuzzy semantic similarity measure (FSSM) coding scheme centering on FSSM codons׳ clustering and genetic code context of nucleotides. Certain natural characteristics of nucleotides i.e. appearance as a unique combination of triplets, preserving special structure and occurrence, and ability to own and share density distributions in codons have been exploited in FSSM. The nucleotides׳ fuzzy behaviors, semantic similarities and defuzzification based on the center of gravity of nucleotides revealed a strong correlation between nucleotides in codons. The proposed FSSM coding scheme attains a significant enhancement in coding regions identification i.e. 36-133% as compared to other existing coding measure schemes tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms.
  9. Chan BT, Lim E, Chee KH, Abu Osman NA
    Comput. Biol. Med., 2013 May;43(4):377-85.
    PMID: 23428371 DOI: 10.1016/j.compbiomed.2013.01.013
    The heart is a sophisticated functional organ that plays a crucial role in the blood circulatory system. Hemodynamics within the heart chamber can be indicative of exert cardiac health. Due to the limitations of current cardiac imaging modalities, computational fluid dynamics (CFD) have been widely used for the purposes of cardiac function assessment and heart disease diagnosis, as they provide detailed insights into the cardiac flow field. An understanding of ventricular hemodynamics and pathological severities can be gained through studies that employ the CFD method. In this research the hemodynamics of two common myocardial diseases, dilated cardiomyopathy (DCM) and myocardial infarction (MI) were investigated, during both the filling phase and the whole cardiac cycle, through a prescribed geometry and fluid structure interaction (FSI) approach. The results of the research indicated that early stage disease identification and the improvement of cardiac assisting devices and therapeutic procedures can be facilitated through the use of the CFD method.
  10. Mookiah MR, Acharya UR, Fujita H, Koh JE, Tan JH, Noronha K, et al.
    Comput. Biol. Med., 2015 Aug;63:208-18.
    PMID: 26093788 DOI: 10.1016/j.compbiomed.2015.05.019
    Age-related Macular Degeneration (AMD) is an irreversible and chronic medical condition characterized by drusen, Choroidal Neovascularization (CNV) and Geographic Atrophy (GA). AMD is one of the major causes of visual loss among elderly people. It is caused by the degeneration of cells in the macula which is responsible for central vision. AMD can be dry or wet type, however dry AMD is most common. It is classified into early, intermediate and late AMD. The early detection and treatment may help one to stop the progression of the disease. Automated AMD diagnosis may reduce the screening time of the clinicians. In this work, we have introduced LCP to characterize normal and AMD classes using fundus images. Linear Configuration Coefficients (CC) and Pattern Occurrence (PO) features are extracted from fundus images. These extracted features are ranked using p-value of the t-test and fed to various supervised classifiers viz. Decision Tree (DT), Nearest Neighbour (k-NN), Naive Bayes (NB), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to classify normal and AMD classes. The performance of the system is evaluated using both private (Kasturba Medical Hospital, Manipal, India) and public domain datasets viz. Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) using ten-fold cross validation. The proposed approach yielded best performance with a highest average accuracy of 97.78%, sensitivity of 98.00% and specificity of 97.50% for STARE dataset using 22 significant features. Hence, this system can be used as an aiding tool to the clinicians during mass eye screening programs to diagnose AMD.
  11. Muda HM, Saad P, Othman RM
    Comput. Biol. Med., 2011 Aug;41(8):687-99.
    PMID: 21704312 DOI: 10.1016/j.compbiomed.2011.06.004
    Remote protein homology detection and fold recognition refer to detection of structural homology in proteins where there are small or no similarities in the sequence. To detect protein structural classes from protein primary sequence information, homology-based methods have been developed, which can be divided to three types: discriminative classifiers, generative models for protein families and pairwise sequence comparisons. Support Vector Machines (SVM) and Neural Networks (NN) are two popular discriminative methods. Recent studies have shown that SVM has fast speed during training, more accurate and efficient compared to NN. We present a comprehensive method based on two-layer classifiers. The 1st layer is used to detect up to superfamily and family in SCOP hierarchy using optimized binary SVM classification rules. It used the kernel function known as the Bio-kernel, which incorporates the biological information in the classification process. The 2nd layer uses discriminative SVM algorithm with string kernel that will detect up to protein fold level in SCOP hierarchy. The results obtained were evaluated using mean ROC and mean MRFP and the significance of the result produced with pairwise t-test was tested. Experimental results show that our approaches significantly improve the performance of remote protein homology detection and fold recognition for all three different version SCOP datasets (1.53, 1.67 and 1.73). We achieved 4.19% improvements in term of mean ROC in SCOP 1.53, 4.75% in SCOP 1.67 and 4.03% in SCOP 1.73 datasets when compared to the result produced by well-known methods. The combination of first layer and second layer of BioSVM-2L performs well in remote homology detection and fold recognition even in three different versions of datasets.
  12. Roslan R, Othman RM, Shah ZA, Kasim S, Asmuni H, Taliba J, et al.
    Comput. Biol. Med., 2010 Jun;40(6):555-64.
    PMID: 20417930 DOI: 10.1016/j.compbiomed.2010.03.009
    Protein-protein interactions (PPIs) play a significant role in many crucial cellular operations such as metabolism, signaling and regulations. The computational methods for predicting PPIs have shown tremendous growth in recent years, but problem such as huge false positive rates has contributed to the lack of solid PPI information. We aimed at enhancing the overlap between computational predictions and experimental results in an effort to partially remove PPIs falsely predicted. The use of protein function predictor named PFP() that are based on shared interacting domain patterns is introduced in this study with the purpose of aiding the Gene Ontology Annotations (GOA). We used GOA and PFP() as agents in a filtering process to reduce false positive pairs in the computationally predicted PPI datasets. The functions predicted by PFP() were extracted from cross-species PPI data in order to assign novel functional annotations for the uncharacterized proteins and also as additional functions for those that are already characterized by the GO (Gene Ontology). The implementation of PFP() managed to increase the chances of finding matching function annotation for the first rule in the filtration process as much as 20%. To assess the capability of the proposed framework in filtering false PPIs, we applied it on the available S. cerevisiae PPIs and measured the performance in two aspects, the improvement made indicated as Signal-to-Noise Ratio (SNR) and the strength of improvement, respectively. The proposed filtering framework significantly achieved better performance than without it in both metrics.
  13. Ahmad Fadzil MH, Izhar LI, Nugroho HA
    Comput. Biol. Med., 2010 Jul;40(7):657-64.
    PMID: 20573343 DOI: 10.1016/j.compbiomed.2010.05.004
    Monitoring FAZ area enlargement enables physicians to monitor progression of the DR. At present, it is difficult to discern the FAZ area and to measure its enlargement in an objective manner using digital fundus images. A semi-automated approach for determination of FAZ using color images has been developed. Here, a binary map of retinal blood vessels is computer generated from the digital fundus image to determine vessel ends and pathologies surrounding FAZ for area analysis. The proposed method is found to achieve accuracies from 66.67% to 98.69% compared to accuracies of 18.13-95.07% obtained by manual segmentation of FAZ regions from digital fundus images.
  14. Meselhy Eltoukhy M, Faye I, Belhaouari Samir B
    Comput. Biol. Med., 2010 Apr;40(4):384-91.
    PMID: 20163793 DOI: 10.1016/j.compbiomed.2010.02.002
    This paper presents a comparative study between wavelet and curvelet transform for breast cancer diagnosis in digital mammogram. Using multiresolution analysis, mammogram images are decomposed into different resolution levels, which are sensitive to different frequency bands. A set of the biggest coefficients from each decomposition level is extracted. Then a supervised classifier system based on Euclidian distance is constructed. The performance of the classifier is evaluated using a 2 x 5-fold cross validation followed by a statistical analysis. The experimental results suggest that curvelet transform outperforms wavelet transform and the difference is statistically significant.
  15. Achuthan A, Rajeswari M, Ramachandram D, Aziz ME, Shuaib IL
    Comput. Biol. Med., 2010 Jul;40(7):608-20.
    PMID: 20541182 DOI: 10.1016/j.compbiomed.2010.04.005
    This paper introduces an approach to perform segmentation of regions in computed tomography (CT) images that exhibit intra-region intensity variations and at the same time have similar intensity distributions with surrounding/adjacent regions. In this work, we adapt a feature computed from wavelet transform called wavelet energy to represent the region information. The wavelet energy is embedded into a level set model to formulate the segmentation model called wavelet energy-guided level set-based active contour (WELSAC). The WELSAC model is evaluated using several synthetic and CT images focusing on tumour cases, which contain regions demonstrating the characteristics of intra-region intensity variations and having high similarity in intensity distributions with the adjacent regions. The obtained results show that the proposed WELSAC model is able to segment regions of interest in close correspondence with the manual delineation provided by the medical experts and to provide a solution for tumour detection.
  16. Aibinu AM, Iqbal MI, Shafie AA, Salami MJ, Nilsson M
    Comput. Biol. Med., 2010 Jan;40(1):81-9.
    PMID: 20022595 DOI: 10.1016/j.compbiomed.2009.11.004
    The use of vascular intersection aberration as one of the signs when monitoring and diagnosing diabetic retinopathy from retina fundus images (FIs) has been widely reported in the literature. In this paper, a new hybrid approach called the combined cross-point number (CCN) method able to detect the vascular bifurcation and intersection points in FIs is proposed. The CCN method makes use of two vascular intersection detection techniques, namely the modified cross-point number (MCN) method and the simple cross-point number (SCN) method. Our proposed approach was tested on images obtained from two different and publicly available fundus image databases. The results show a very high precision, accuracy, sensitivity and low false rate in detecting both bifurcation and crossover points compared with both the MCN and the SCN methods.
  17. Kalsum HU, Shah ZA, Othman RM, Hassan R, Rahim SM, Asmuni H, et al.
    Comput. Biol. Med., 2009 Nov;39(11):1013-9.
    PMID: 19720371 DOI: 10.1016/j.compbiomed.2009.08.002
    Protein domains contain information about the prediction of protein structure, function, evolution and design since the protein sequence may contain several domains with different or the same copies of the protein domain. In this study, we proposed an algorithm named SplitSSI-SVM that works with the following steps. First, the training and testing datasets are generated to test the SplitSSI-SVM. Second, the protein sequence is split into subsequence based on order and disorder regions. The protein sequence that is more than 600 residues is split into subsequences to investigate the effectiveness of the protein domain prediction based on subsequence. Third, multiple sequence alignment is performed to predict the secondary structure using bidirectional recurrent neural networks (BRNN) where BRNN considers the interaction between amino acids. The information of about protein secondary structure is used to increase the protein domain boundaries signal. Lastly, support vector machines (SVM) are used to classify the protein domain into single-domain, two-domain and multiple-domain. The SplitSSI-SVM is developed to reduce misleading signal, lower protein domain signal caused by primary structure of protein sequence and to provide accurate classification of the protein domain. The performance of SplitSSI-SVM is evaluated using sensitivity and specificity on single-domain, two-domain and multiple-domain. The evaluation shows that the SplitSSI-SVM achieved better results compared with other protein domain predictors such as DOMpro, GlobPlot, Dompred-DPS, Mateo, Biozon, Armadillo, KemaDom, SBASE, HMMPfam and HMMSMART especially in two-domain and multiple-domain.
  18. Mustapha N, Amin N, Chakravarty S, Mandal PK
    Comput. Biol. Med., 2009 Oct;39(10):896-906.
    PMID: 19665698 DOI: 10.1016/j.compbiomed.2009.07.004
    Flow of an electrically conducting fluid characterizing blood through the arteries having irregular shaped multi-stenoses in the environment of a uniform transverse magnetic-field is analysed. The flow is considered to be axisymmetric with an outline of the irregular stenoses obtained from a three-dimensional casting of a mild stenosed artery, so that the physical problem becomes more realistic from the physiological point of view. The marker and cell (MAC) and successive-over-relaxation (SOR) methods are respectively used to solve the governing unsteady magnetohydrodynamic (MHD) equations and pressure-Poisson equation quantitatively and to observe the flow separation. The results obtained show that the flow separates mostly towards the downstream of the multi-stenoses. However, the flow separation region keeps on shrinking with the increasing intensity of the magnetic-field which completely disappears with sufficiently large value of the Hartmann number. The present observations certainly have some clinical implications relating to magnetotherapy which help reducing the complex flow separation zones causing flow disorder leading to the formation and progression of the arterial diseases.
  19. Kasim S, Deris S, Othman RM
    Comput. Biol. Med., 2013 Sep;43(9):1120-33.
    PMID: 23930805 DOI: 10.1016/j.compbiomed.2013.05.011
    A drastic improvement in the analysis of gene expression has lead to new discoveries in bioinformatics research. In order to analyse the gene expression data, fuzzy clustering algorithms are widely used. However, the resulting analyses from these specific types of algorithms may lead to confusion in hypotheses with regard to the suggestion of dominant function for genes of interest. Besides that, the current fuzzy clustering algorithms do not conduct a thorough analysis of genes with low membership values. Therefore, we present a novel computational framework called the "multi-stage filtering-Clustering Functional Annotation" (msf-CluFA) for clustering gene expression data. The framework consists of four components: fuzzy c-means clustering (msf-CluFA-0), achieving dominant cluster (msf-CluFA-1), improving confidence level (msf-CluFA-2) and combination of msf-CluFA-0, msf-CluFA-1 and msf-CluFA-2 (msf-CluFA-3). By employing double filtering in msf-CluFA-1 and apriori algorithms in msf-CluFA-2, our new framework is capable of determining the dominant clusters and improving the confidence level of genes with lower membership values by means of which the unknown genes can be predicted.
  20. Ali A, Logeswaran R
    Comput. Biol. Med., 2007 Aug;37(8):1141-7.
    PMID: 17126314
    The 3D ultrasound systems produce much better reproductions than 2D ultrasound, but their prohibitively high cost deprives many less affluent organization this benefit. This paper proposes using the conventional 2D ultrasound equipment readily available in most hospitals, along with a single conventional digital camera, to construct 3D ultrasound images. The proposed system applies computer vision to extract position information of the ultrasound probe while the scanning takes place. The probe, calibrated in order to calculate the offset of the ultrasound scan from the position of the marker attached to it, is used to scan a number of geometrical objects. Using the proposed system, the 3D volumes of the objects were successfully reconstructed. The system was tested in clinical situations where human body parts were scanned. The results presented, and confirmed by medical staff, are very encouraging for cost-effective implementation of computer-aided 3D ultrasound using a simple setup with 2D ultrasound equipment and a conventional digital camera.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links