Displaying all 6 publications

Abstract:
Sort:
  1. Azhari H, Ng SF, Mohd Razali R, Loo HL
    Curr Med Res Opin, 2024 May;40(5):753-763.
    PMID: 38625386 DOI: 10.1080/03007995.2024.2340734
    Atopic dermatitis (AD) has become a common childhood disease that affects a large number of children worldwide and has become a chronic skin disease that causes huge economical and psychological damage to the whole family. Despite the use of steroids, immunosuppressants, and various topical preparation, the prognosis is still poor. Hence, this review aimed to explore the potential of using essential oils (EO) as an active ingredient in managing AD. The review was completed by using Pubmed, Scopus, and Medline to search for relevant articles that study the pathophysiology of AD, the properties of EO, the use of EO in managing AD, and the suitable advanced formulation to incorporate EO. From the review conducted, it was concluded that EO have huge potential in managing AD and can be used as complimentary therapeutic agents in AD treatment. Scientists and industries should venture into commercializing more topical products with EO to help manage AD more effectively.
  2. Izzati Mat Rani NN, Alzubaidi ZM, Azhari H, Mustapa F, Iqbal Mohd Amin MC
    Eur J Pharmacol, 2021 Jun 05;900:174009.
    PMID: 33722591 DOI: 10.1016/j.ejphar.2021.174009
    Over the years, extensive studies on erythrocytes, also known as red blood cells (RBCs), as a mechanism for drug delivery, have been explored mainly because the cell itself is the most abundant and has astonishing properties such as a long life span of 100-120 days, low immunogenicity, good biocompatibility, and flexibility. There are various types of RBC-based systems for drug delivery, including those that are genetically engineered, non-genetically engineered RBCs, as well as employing erythrocyte as nanocarriers for drug loading. Although promising, these systems are still in an early development stage. In this review, we aimed to highlight the development of biomimicking RBC-based drug and vaccine delivery systems, as well as the loading methods with illustrative examples. Drug-erythrocyte associations will also be discussed and highlighted in this review. We have highlighted the possibility of exploiting erythrocytes for the sustained delivery of drugs and vaccines, encapsulation of these biological agents within the erythrocyte or coupling to the surface of carrier erythrocytes, and provided insights on genetically- and non-genetically engineered erythrocytes-based strategies. Erythrocytes have been known as effective cellular carriers for therapeutic moieties for several years. Herein, we outline various loading methods that can be used to reap the benefits of these natural carriers. It has been shown that drugs and vaccines can be delivered via erythrocytes but it is important to select appropriate methods for increasing the drug encapsulated or conjugated on the surface of the erythrocyte membrane. The outlined examples will guide the selection of the most effective method as well as the impact of using erythrocytes as delivery systems for drugs and vaccines.
  3. Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, et al.
    Eur J Pharm Biopharm, 2021 Aug;165:84-105.
    PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021
    Multi antibiotic-resistant bacterial infections are on the rise due to the overuse of antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the pathogens listed under the category of serious threats where vancomycin remains the mainstay treatment despite the availability of various antibacterial agents. Recently, decreased susceptibility to vancomycin from clinical isolates of MRSA has been reported and has drawn worldwide attention as it is often difficult to overcome and leads to increased medical costs, mortality, and longer hospital stays. Development of antibiotic delivery systems is often necessary to improve bioavailability and biodistribution, in order to reduce antibiotic resistance and increase the lifespan of antibiotics. Liposome entrapment has been used as a method to allow higher drug dosing apart from reducing toxicity associated with drugs. The surface of the liposomes can also be designed and enhanced with drug-release properties, active targeting, and stealth effects to prevent recognition by the mononuclear phagocyte system, thus enhancing its circulation time. The present review aimed to highlight the possible targeting strategies of liposomes against MRSA bacteremia systemically while investigating the magnitude of this effect on the minimum inhibitory concentration level.
  4. Kron T, Azhari HA, Voon EO, Cheung KY, Ravindran P, Soejoko D, et al.
    Australas Phys Eng Sci Med, 2015 Sep;38(3):493-501.
    PMID: 26346030 DOI: 10.1007/s13246-015-0373-2
    It was the aim of this work to assess and track the workload, working conditions and professional recognition of radiation oncology medical physicists (ROMPs) in the Asia Pacific region over time. In this third survey since 2008, a structured questionnaire was mailed in 2014 to 22 senior medical physicists representing 23 countries. As in previous surveys the questionnaire covered seven themes: 1 education, training and professional certification, 2 staffing, 3 typical tasks, 4 professional organisations, 5 resources, 6 research and teaching, and 7 job satisfaction. The response rate of 100% is a result of performing a survey through a network, which allows easy follow-up. The replies cover 4841 ROMPs in 23 countries. Compared to 2008, the number of medical physicists in many countries has doubled. However, the number of experienced ROMPs compared to the overall workforce is still small, especially in low and middle income countries. The increase in staff is matched by a similar increase in the number of treatment units over the years. Furthermore, the number of countries using complex techniques (IMRT, IGRT) or installing high end equipment (tomotherapy, robotic linear accelerators) is increasing. Overall, ROMPs still feel generally overworked and the professional recognition, while varying widely, appears to be improving only slightly. Radiation oncology medical physics practice has not changed significantly over the last 6 years in the Asia Pacific Region even if the number of physicists and the number and complexity of treatment techniques and technologies have increased dramatically.
  5. Round WH, Jafari S, Kron T, Azhari HA, Chhom S, Hu Y, et al.
    Australas Phys Eng Sci Med, 2015 Sep;38(3):525.
    PMID: 26349560 DOI: 10.1007/s13246-015-0370-5
  6. Round WH, Jafari S, Kron T, Azhari HA, Chhom S, Hu Y, et al.
    Australas Phys Eng Sci Med, 2015 Sep;38(3):381-98.
    PMID: 25894289 DOI: 10.1007/s13246-015-0342-9
    The history of medical physics in Asia-Oceania goes back to the late nineteenth century when X-ray imaging was introduced, although medical physicists were not appointed until much later. Medical physics developed very quickly in some countries, but in others the socio-economic situation as such prevented it being established for many years. In others, the political situation and war has impeded its development. In many countries their medical physics history has not been well recorded and there is a danger that it will be lost to future generations. In this paper, brief histories of the development of medical physics in most countries in Asia-Oceania are presented by a large number of authors to serve as a record. The histories are necessarily brief; otherwise the paper would quickly turn into a book of hundreds of pages. The emphasis in each history as recorded here varies as the focus and culture of the countries as well as the length of their histories varies considerably.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links