Displaying publications 1 - 20 of 52 in total

  1. Chigurupati S, Dhanaraj SA, Balakumar P
    Eur J Pharmacol, 2015 May 15;755:50-7.
    PMID: 25748601 DOI: 10.1016/j.ejphar.2015.02.043
    Described since long as a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptors (PPARs) regulate the gene expression of proteins involved in glucose and lipid metabolism. PPARs indeed regulate several physiologic processes, including lipid homeostasis, adipogenesis, inflammation, and wound healing. PPARs bind natural or synthetic PPAR ligands can function as cellular sensors to regulate the gene transcription. Dyslipidemia, and type 2 diabetes mellitus (T2DM) with insulin resistance are treated using agonists of PPARα and PPARγ, respectively. The PPARγ is a key regulator of insulin sensitization and glucose metabolism, and therefore is considered as an imperative pharmacological target to combat diabetic metabolic disease and insulin resistance. Of note, currently available PPARγ full agonists like rosiglitazone display serious adverse effects such as fluid retention/oedema, weight gain, and increased incidence of cardiovascular events. On the other hand, PPARγ partial agonists are being suggested to devoid or having less incidence of these undesirable events, and are under developmental stages. Current research is on the way for the development of novel PPARγ partial agonists with enhanced therapeutic efficacy and reduced adverse effects. This review sheds lights on the current status of development of PPARγ partial agonists, for the management of T2DM, having comparatively less or no adverse effects to that of PPARγ full agonists.
  2. Ong SB, Kalkhoran SB, Cabrera-Fuentes HA, Hausenloy DJ
    Eur J Pharmacol, 2015 Sep 15;763(Pt A):104-14.
    PMID: 25987420 DOI: 10.1016/j.ejphar.2015.04.056
    The past decade has witnessed a number of exciting developments in the field of mitochondrial dynamics - a phenomenon in which changes in mitochondrial shape and movement impact on cellular physiology and pathology. By undergoing fusion and fission, mitochondria are able to change their morphology between elongated interconnected networks and discrete fragmented structures, respectively. The cardiac mitochondria, in particular, have garnered much interest due to their unique spatial arrangement in the adult cardiomyocyte, and the multiple roles they play in cell death and survival. In this article, we review the role of the mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease.
  3. Oon CE, Strell C, Yeong KY, Östman A, Prakash J
    Eur J Pharmacol, 2015 Jun 15;757:59-67.
    PMID: 25843411 DOI: 10.1016/j.ejphar.2015.03.064
    Gemcitabine remains the standard treatment for pancreatic cancer, although most patients acquire resistance to the therapy. Up-regulated in pancreatic cancer, SIRT1 is involved in tumorigenesis and drug resistance. However the mechanism through which SIRT1 regulates drug sensitivity in cancer cells is mainly unknown. We hypothesise that inhibiting SIRT1 activity may increase sensitivity of pancreatic cancer cells to gemcitabine treatment through the regulation of apototic cell death, cell cycle, epithelial-mesenschymal-transition (EMT) and senescence. We demonstrate that gemcitabine or 6-Chloro-2,3,4,9-tetrahydro-1 H-Carbazole-1-carboxamide (EX527) SIRT1 inhibitor reduces PANC-1 cell proliferation in vitro. EX527 enhanced sensitivity of PANC-1 cells to gemcitabine treatment through increased apoptosis. However, EX527 displayed no beneficial effect either as a monotreatment or in combination with gemcitabine in the modulation of cell cycle progression. Combination treatment did not reverse the two phenomena known to affect drug sensitivity, namely EMT and senescence, which are both induced by gemcitabine. Unexpectedly, EX527 promoted PANC-1 xenograft tumour growth in SCID mice compared to control group. Dual tX527 and gemcitabine displayed no synergistic effect compared to gemcitabine alone. The study reveals that SIRT1 is involved in chemoresistance and that inhibiting SIRT1 activity with EX527 sensitised PANC-1 cells to gemcitabine treatment in vitro. Sensitisation of cells is shown to be mainly through induction of micronuclei formation as a result of DNA damage and apoptosis in vitro. However, the absence of positive combinatorial effects in vivo indicates possible effects on cells of the tumor microenvironment and suggests caution regarding the clinical relevance of tissue culture findings with EX527.
  4. Razali N, Agarwal R, Agarwal P, Kapitonova MY, Kannan Kutty M, Smirnov A, et al.
    Eur J Pharmacol, 2015 Feb 15;749:73-80.
    PMID: 25481859 DOI: 10.1016/j.ejphar.2014.11.029
    Steroid-induced ocular hypertension (SIOH) is associated with topical and systemic use of steroids. However, SIOH-associated anterior and posterior segment morphological changes in rats have not been described widely. Here we describe the pattern of intraocular pressure (IOP) changes, quantitative assessment of trabecular meshwork (TM) and retinal morphological changes and changes in retinal redox status in response to chronic dexamethasone treatment in rats. We also evaluated the responsiveness of steroid-pretreated rat eyes to 5 different classes of antiglaucoma drugs that act by different mechanisms. Up to 80% of dexamethasone treated animals achieved significant and sustained IOP elevation. TM thickness was significantly increased and number of TM cells was significantly reduced in SIOH rats compared to the vehicle-treated rats. Quantitative assessment of retinal morphology showed significantly reduced thickness of ganglion cell layer (GCL) and inner retina (IR) in SIOH rats compared to vehicle-treated rats. Estimation of retinal antioxidants including catalase, superoxide dismutase and glutathione showed significantly increased retinal oxidative stress in SIOH animals. Furthermore, steroid-treated eyes showed significant IOP lowering in response to treatment with 5 different drug classes. This indicated the ability of SIOH eyes to respond to drugs acting by different mechanisms. In conclusion, SIOH was associated with significant morphological changes in TM and retina and retinal redox status. Additionally, SIOH eyes also showed IOP lowering in response to drugs that act by different mechanisms of action. Hence, SIOH rats appear to be an inexpensive and noninvasive model for studying the experimental antiglaucoma drugs for IOP lowering and neuroprotective effects.
  5. Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, et al.
    Eur J Pharmacol, 2015 Feb 15;749:1-11.
    PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015
    2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
  6. Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling KH
    Eur J Pharmacol, 2014 Oct 5;740:584-95.
    PMID: 24973693 DOI: 10.1016/j.ejphar.2014.06.025
    Breast cancer is the most common cancer among women worldwide and novel therapeutic agents are needed to treat this disease. The plant-based alkaloid berberine has potential therapeutic applications for breast cancer, although a better understanding of the genes and cellular pathways regulated by this compound is needed to define the mechanism of its action in cancer treatment. In this review, the molecular targets of berberine in various cancers, particularly breast cancer, are discussed. Berberine was shown to be effective in inhibiting cell proliferation and promoting apoptosis in various cancerous cells. Some signaling pathways affected by berberine, including the MAP (mitogen-activated protein) kinase and Wnt/β-catenin pathways, are critical for reducing cellular migration and sensitivity to various growth factors. This review will discuss recent studies and consider the application of new prospective approaches based on microRNAs and other crucial regulators for use in future studies to define the action of berberine in cancer. The effects of berberine on cancer cell survival and proliferation are also outlined.
  7. Ismail NA, Baines DL, Wilson SM
    Eur J Pharmacol, 2014 Jun 05;732:32-42.
    PMID: 24657276 DOI: 10.1016/j.ejphar.2014.03.005
    Neural precursor cell expressed, developmentally down-regulated protein 4-2 (Nedd4-2) mediates the internalisation / degradation of epithelial Na(+) channel subunits (α-, β- and γ-ENaC). Serum / glucocorticoid inducible kinase 1 (SGK1) and protein kinase A (PKA) both appear to inhibit this process by phosphorylating Nedd4-2-Ser(221), -Ser(327) and -Thr(246). This Nedd4-2 inactivation process is thought to be central to the hormonal control of Na(+) absorption. The present study of H441 human airway epithelial cells therefore explores the effects of SGK1 and / or PKA upon the phosphorylation / abundance of endogenous Nedd4-2; the surface expression of ENaC subunits, and electrogenic Na(+) transport. Effects on Nedd4-2 phosphorylation/abundance and the surface expression of ENaC were monitored by western analysis, whilst Na(+) absorption was quantified electrometrically. Acutely (20min) activating PKA in glucocorticoid-deprived (24h) cells increased the abundance of Ser(221)-phosphorylated, Ser(327)-phosphorylated and total Nedd4-2 without altering the abundance of Thr(246)-phosphorylated Nedd4-2. Activating PKA under these conditions did not cause a co-ordinated increase in the surface abundance of α-, β- and γ-ENaC and had only a very small effect upon electrogenic Na(+) absorption. Activating PKA (20min) in glucocorticoid-treated (0.2µM dexamethasone, 24h) cells, on the other hand, increased the abundance of Ser(221)-, Ser(327)- and Thr(246)-phosphorylated and total Nedd4-2; increased the surface abundance of α-, β- and γ-ENaC and evoked a clear stimulation of Na(+) transport. Chronic glucocorticoid stimulation therefore appears to allow cAMP-dependent control of Na(+) absorption by facilitating the effects of PKA upon the Nedd4-2 and ENaC subunits.
  8. Agarwal R, Krasilnikova AV, Raja IS, Agarwal P, Mohd Ismail N
    Eur J Pharmacol, 2014 May 5;730:8-13.
    PMID: 24583339 DOI: 10.1016/j.ejphar.2014.02.021
    Angiotensin converting enzyme inhibitors (ACEIs) have been shown to lower intraocular pressure (IOP). Since, the ACEIs cause increased tissue prostaglandin levels, we hypothesized that the mechanisms of ACEI-induced IOP reduction have similarity with those of prostaglandin analogs. The present study investigated the involvement of matrix metalloproteinases (MMPs) and cytokine activity modulation as the underlying mechanisms of ACEI-induced ocular hypotension. The IOP lowering effect of single drop of enalaprilat dehydrate 1% was evaluated in rats pretreated with a broad spectrum MMP inhibitor or a cytokine inhibitor. Effect of angiotensin receptor blocker, losartan potassium 2%, was also studied to evaluate involvement of angiotensin II receptor type 1 (AT1) in IOP lowering effect of ACEI. Topical treatment with single drop of enalaprilat resulted in significant IOP reduction in treated eye with mean peak reduction 20.3% at 3h post-instillation. Treatment with losartan resulted in a peak IOP reduction of 13.3%, which was significantly lower than enalaprilat, indicating involvement of mechanisms in addition to AT1 blockade. Pretreatment with a broad spectrum MMP inhibitor or a cytokine inhibitor significantly attenuated the enalprilat-induced IOP reduction with mean peak IOP reduction of 11.2% and 13.6% respectively. The IOP-lowering effect of enalaprilat seems to be attributed to reduced angiotensin II type 1 receptor stimulation and modulation of MMP and cytokines activities.
  9. Mokhtar SS, Vanhoutte PM, Leung SW, Suppian R, Yusof MI, Rasool AH
    Eur J Pharmacol, 2016 Feb 15;773:78-84.
    PMID: 26825543 DOI: 10.1016/j.ejphar.2016.01.013
    Diabetes is associated with endothelial dysfunction, which is characterized by impaired endothelium-dependent relaxations. The present study aimed to examine the role of nitric oxide (NO), prostacyclin and endothelium-dependent hyperpolarization (EDH), in the relaxation of ventral tail arteries of rats under diabetic conditions. Relaxations of tail arteries of control and diabetic rats were studied in wire myograph. Western blotting and immunostaining were used to determine the presence of proteins. Acetylcholine-induced relaxations were significantly smaller in arteries of diabetic compared to control rats (Rmax; 70.81 ± 2.48% versus 85.05 ± 3.15%). Incubation with the combination of non-selective cyclooxygenase (COX) inhibitor, indomethacin and potassium channel blockers, TRAM 34 and UCL 1684, demonstrated that NO-mediated relaxation was attenuated significantly in diabetic compared to control rats (Rmax; 48.47 ± 5.84% versus 68.39 ± 6.34%). EDH-type (in the presence of indomethacin and NO synthase inhibitor, LNAME) and prostacyclin-mediated (in the presence of LNAME plus TRAM 34 and UCL 1684) relaxations were not significantly reduced in arteries of diabetic compared to control rats [Rmax: (EDH; 17.81 ± 6.74% versus 34.16 ± 4.59%) (prostacyclin; 15.85 ± 3.27% versus 17.23 ± 3.75%)]. Endothelium-independent relaxations to sodium nitroprusside, salbutamol and prostacyclin were comparable in the two types of preparations. Western blotting and immunostaining indicated that diabetes diminished the expression of endothelial NO synthase (eNOS), while increasing those of COX-1 and COX-2. Thus, since acetylcholine-induced NO-mediated relaxation was impaired in diabetes because of reduced eNOS protein expression, pharmacological intervention improving NO bioavailability could be useful in the management of diabetic endothelial dysfunction.
  10. Adam SH, Giribabu N, Rao PV, Sayem AS, Arya A, Panichayupakaranant P, et al.
    Eur J Pharmacol, 2016 Jan 15;771:173-90.
    PMID: 26703866 DOI: 10.1016/j.ejphar.2015.12.028
    Effect of Rhinacanthin C on hyperglycaemia, hyperlipidemia and pancreatic dysfunction in diabetes was investigated. In-vitro effect of Rhinacanthin C on glucose uptake was studied in 3T3-L1 cell line. Meanwhile, in-vivo effect of 28-days treatment with 5mg/kg/day or 20mg/kg/day Rhinacanthin C was studied in streptozotocin-nicotinamide induced male diabetic rats. Following completion of treatment, fasting blood glucose (FBG), HbA1c, insulin and lipid profile levels were measured by biochemical assays. Histopathological changes in pancreas were observed by light microscopy while levels of pancreatic oxidative stress were determined by enzymatic assays. Expression of insulin, TNFα, Ikkβ and caspase-3 in pancreas were quantified by immunohistochemistry. Molecular docking was used to identify interactions between Rhinacathin C with SOD or GPx enzymes. Dose-dependent increase in glucose uptake was observed with increasing doses of Rhinacathin C. Plasma FBG, HbA1c and lipid profile except LDL levels and pancreatic malonaldehyde level were reduced but serum insulin and pancreatic anti-oxidative enzymes (SOD, CAT and GPx) levels were increased in diabetic rats receiving Rhinacanthin C treatment. Decreased pancreatic histopathological changes with higher pancreatic insulin and Glut-2 levels but lower TNFα, Ikkβ and caspase-3 levels were observed in diabetic rats receiving Rhinacanthin C (P<0.05 compared to non-treated diabetic rats). In diabetic rats which received Rhinacathin C, changes in the above parameters did not achieve the value in non-diabetic rats. Docking shows Rhinacathin C possesses high degree interactions with SOD and GPx. By possessing these effects, Rhinacanthin C could be used as agent to alleviate pancreatic and other complications in diabetes.
  11. Pabreja K, Dua K, Sharma S, Padi SS, Kulkarni SK
    Eur J Pharmacol, 2011 Jul 1;661(1-3):15-21.
    PMID: 21536024 DOI: 10.1016/j.ejphar.2011.04.014
    Painful neuropathy, a common complication of diabetes mellitus is characterized by allodynia and hyperalgesia. Recent studies emphasized on the role of non-neuronal cells, particularly microglia in the development of neuronal hypersensitivity. The purpose of the present study is to evaluate the effect of minocyline, a selective inhibitor of microglial activation to define the role of neuroimmune activation in experimental diabetic neuropathy. Cold allodynia and thermal and chemical hyperalgesia were assessed and the markers of inflammation and oxidative and nitrosative stress were estimated in streptozotocin-induced diabetic rats. Chronic administration of minocycline (40 and 80 mg/kg, i.p.) for 2 weeks started 2 weeks after diabetes induction attenuated the development of diabetic neuropathy as compared to diabetic control animals. In addition, minocyline treatment reduced the levels of interleukin-1β and tumor necrosis factor-α, lipid peroxidation, nitrite and also improved antioxidant defense in spinal cords of diabetic rats as compared to diabetic control animals. In contrast, minocycline (80 mg/kg, per se) had no effect on any of these behavioral and biochemical parameters assessed in age-matched control animals. The results of the present study strongly suggest that activated microglia are involved in the development of experimental diabetic neuropathy and minocycline exerted its effect probably by inhibition of neuroimmune activation of microglia. In addition, the beneficial effects of minocycline are partly mediated by its anti-inflammatory effect by reducing the levels of proinflammatory cytokines and in part by modulating oxidative and nitrosative stress in the spinal cord that might be involved in attenuating the development of behavioral hypersensitivity in diabetic rats.
  12. Chellian R, Pandy V, Mohamed Z
    Eur J Pharmacol, 2018 Jan 05;818:10-16.
    PMID: 29042206 DOI: 10.1016/j.ejphar.2017.10.025
    In the present study, the effect α-asarone on nicotine withdrawal-induced depression-like behavior in mice was investigated. In this study, mice were exposed to drinking water or nicotine solution (10-200µg/ml) as a source of drinking for forty days. During this period, daily fluid consumption, food intake and body weight were recorded. The serum cotinine level was estimated before nicotine withdrawal. Naïve mice or nicotine-withdrawn mice were treated with α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) for eight consecutive days and the forced swim test (FST) or locomotor activity test was conducted. In addition, the effect of α-asarone or bupropion on the hippocampal pCREB, CREB and BDNF levels during nicotine-withdrawal were measured. Results indicated that α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment did not significantly alter the immobility time in the FST or spontaneous locomotor activity in naïve mice. However, the immobility time of nicotine-withdrawn mice was significantly attenuated with α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment in the FST. Besides, α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment significantly attenuated the hippocampal pCREB levels in nicotine-withdrawn mice. Overall, the present results indicate that α-asarone treatment attenuated the depression-like behavior through the modulation of hippocampal pCREB levels during nicotine-withdrawal in mice.
  13. Tang KS, Tan JS
    Eur J Pharmacol, 2019 Jan 05;842:133-138.
    PMID: 30385347 DOI: 10.1016/j.ejphar.2018.10.039
    The prevalence of stroke is high in both developing and developed nations. It causes a heavy social and financial burden to the sufferers and their caregivers. Thrombolytic therapy is the only pharmacological treatment available for stroke. However, thrombolytic agents do not provide substantial improvement on long term motor and cognitive disabilities. Thus, there is a need to explore for new compounds that can halt or reverse the deterioration of neurons in the stroke patients' brain. Polydatin, a precursor of resveratrol, is a natural stilbene commonly found in food. This review article describes how different parameters were altered with ischemic injury and polydatin treatment, why it is important and how it could be beneficial or useful in future studies. Our review of polydatin provides convincing evidence regarding the potential of polydatin to be developed into preventive or therapeutic products for ischemic stroke. Nevertheless, additional studies are necessary in order to properly elucidate the biological mechanisms of polydatin, especially its molecular mechanisms of protection and target proteins, in cerebral ischemia.
  14. Paudel YN, Shaikh MF, Shah S, Kumari Y, Othman I
    Eur J Pharmacol, 2018 Oct 15;837:145-155.
    PMID: 30125565 DOI: 10.1016/j.ejphar.2018.08.020
    Epilepsy is a devastating condition affecting around 70 million people worldwide. Moreover, the quality of life of people with epilepsy (PWE) is worsened by a series of comorbidities. The neurobehavioral comorbidities discussed herein share a reciprocal and complex relationship with epilepsy, which ultimately complicates the treatment process in PWE. Understanding the mechanistic pathway by which these comorbidities are associated with epilepsy might be instrumental in developing therapeutic interventions. Inflammatory cytokine signaling in the brain regulates important brain functions including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, dopaminergic transmission, the kynurenine pathway, and affects neurogenesis as well as the neural circuitry of moods. In this review, we hypothesize that the complex relationship between epilepsy and its related comorbidities (cognitive impairment, depression, anxiety, autism, and schizophrenia) can be unraveled through the inflammatory mechanism that plays a prominent role in all these individual conditions. An ample amount of evidence is available reporting the role of inflammation in epilepsy and all individual comorbid condition but their complex relationship with epilepsy has not yet been explored through the prospective of inflammatory pathway. Our review suggests that epilepsy and its neurobehavioral comorbidities are associated with elevated levels of several key inflammatory markers. This review also sheds light on the mechanistic association between epilepsy and its neurobehavioral comorbidities. Moreover, we analyzed several anti-inflammatory therapies available for epilepsy and its neurobehavioral comorbidities. We suggest, these anti-inflammatory therapies might be a possible intervention and could be a promising strategy for preventing epileptogenesis and its related neurobehavioral comorbidities.
  15. Lee YT, Tan YJ, Oon CE
    Eur J Pharmacol, 2018 Sep 05;834:188-196.
    PMID: 30031797 DOI: 10.1016/j.ejphar.2018.07.034
    Molecular targeted therapies are revolutionized therapeutics which interfere with specific molecules to block cancer growth, progression, and metastasis. Many molecular targeted therapies approved by the Food and Drug Administration (FDA), have demonstrated remarkable clinical success in the treatment of a myriad of cancer types including breast, leukemia, colorectal, lung, and ovarian cancers. This review provides an update on the different types of molecular targeted therapies used in the treatment of cancer, focusing on the fundamentals of molecular targeted therapy, its mode of action in cancer treatment, as well as its advantages and limitations.
  16. Razali N, Agarwal R, Agarwal P, Froemming GRA, Tripathy M, Ismail NM
    Eur J Pharmacol, 2018 Nov 05;838:1-10.
    PMID: 30171854 DOI: 10.1016/j.ejphar.2018.08.035
    Trans-resveratrol was earlier shown to lower intraocular pressure (IOP) in rats; however, its mechanisms of action remain unclear. It has been shown to modulate adenosine receptor (AR) and TGF-β2 signaling, both of which play a role in regulating IOP. Hence, we investigated effects of trans-resveratrol on AR and TGF-β2 signaling. Steroid-induced ocular hypertensive (SIOH) rats were pretreated with A1AR, phospholipase C (PLC) and ERK1/2 inhibitors and were subsequently treated with single drop of trans-resveratrol. Metalloproteinases (MMP)-2 and -9 were measured in aqueous humor (AH). In another set of experiments, effect of trans-resveratrol on AH level of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) was determined after single and multiple drop administration in SIOH rats. Effect of trans-resveratrol on ARs expression, PLC and pERK1/2 activation and MMPs, tPA and uPA secretion was determined using human trabecular meshwork cells (HTMC). Further, effect of trans-resveratrol on TGF-β2 receptors, SMAD signaling molecules and uPA and tPA expression by HTMC was determined in the presence and absence of TGF-β2. Pretreatment with A1AR, PLC and ERK1/2 inhibitors antagonized the IOP lowering effect of trans-resveratrol and caused significant reduction in the AH level of MMP-2 in SIOH rats. Trans-resveratrol increased A1AR and A2AAR expression, cellular PLC, pERK1/2 levels and MMP-2, tPA and uPA secretion by HTMC. Additionally, it produced TGFβRI downregulation and SMAD 7 upregulation. In conclusion, IOP lowering effect of trans-resveratrol involves upregulation of A1AR expression, PLC and ERK1/2 activation and increased MMP-2 secretion. It downregulates TGFβRI and upregulates SMAD7 hence, inhibits TGF-β2 signaling.
  17. Phang CW, Gandah NA, Abd Malek SN, Karsani SA
    Eur J Pharmacol, 2019 Jun 15;853:388-399.
    PMID: 31014923 DOI: 10.1016/j.ejphar.2019.04.032
    Flavokawain C (FKC), a naturally occurring chalcone, has previously been shown to inhibit the growth of colon carcinoma HCT 116 cells through induction of apoptosis and cell cycle arrest. However, the possible underlying mechanisms of cell death as a response to FKC treatment remains unclear. In this study, we performed proteomic analysis of HCT 116 cells treated with FKC to identify proteins that change in abundance. This was followed by bioinformatic analysis to predict possible associated molecular targets or pathways involved in the observed effects of FKC. A total of 35 proteins that changed in abundance (17 increased and 18 decreased) were identified through two-dimensional gel electrophoresis followed by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Using the Ingenuity Pathway Analysis (IPA), these proteins were predicted to be involved in cell death and survival, cell cycle, cellular growth and proliferation, protein synthesis, post-translational modification and amino acid metabolism by. Further analysis of the transcript levels of selected proteins using qPCR showed that some of the genes exhibited similar change of profile to that of the proteins'. Our results have provided novel insights into the potential molecular mechanisms underlying FKC-induced apoptosis or cell death in colon cancer cells.
  18. Marcus AJ, Iezhitsa I, Agarwal R, Vassiliev P, Spasov A, Zhukovskaya O, et al.
    Eur J Pharmacol, 2019 May 05;850:75-87.
    PMID: 30716317 DOI: 10.1016/j.ejphar.2019.01.059
    Ocular hypertension is believed to be involved in the etiology of primary open-angle glaucoma. Although many pharmaceutical agents have been shown to be effective for the reduction of intraocular pressure (IOP), a significant opportunity to improve glaucoma treatments remains. Thus, the aims of the present study were: (1) to evaluate the IOP-lowering effect of four compounds RU-551, RU-555, RU-839 (pyrimido[1,2-a]benzimidazole), and RU-615 (imidazo[1,2-a]benzimidazole) on steroid-induced ocular hypertension in rats after single drop and chronic applications; and (2) to test in silico and in vitro conventional rho-associated kinase (ROCK) inhibitory activity of the selected compound. This study demonstrated that RU-551, RU-555, RU-839, and RU-615 significantly reduced IOP in Sprague Dawley rats with dexamethasone (DEXA) induced ocular hypertension after single drop administration (0.1%), however RU-615 showed the best IOP lowering effect as indicated by maximum IOP reduction of 22.32% from baseline. Repeated dose topical application of RU-615 caused sustained reduction of IOP from baseline throughout the 3 weeks of treatment with maximum IOP reduction of 30.31% on day 15. This study also showed that the steroid-induced increase in IOP is associated with increased retinal oxidative stress and significant retinal ganglion cells (RGCs) loss. Prolonged treatment with RU-615 over 3 weeks results in normalization of IOP in DEXA-treated rats with partial restoration of retinal antioxidant status (catalase, glutathione and superoxide dismutase) and subsequent protective effect against RGC loss. Thus, IOP lowering activity of RU-615 together with antioxidant properties might be the factors that contribute to prevention of further RGC loss. In vitro part of this study explored the ROCK inhibitory activity of RU-615 using dexamethasone-treated human trabecular meshwork cells as a possible mechanism of action of its IOP lowering activity. However, this study didn't show conventional ROCK inhibition by RU-615 which was later confirmed by in silico consensus prediction. Therefore, in the future studies it is important to identify the upstream target receptors for RU-615 and then delineate the involved intracellular signalling pathways which are likely to be other than ROCK inhibition.
  19. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Eur J Pharmacol, 2007 Apr 30;561(1-3):144-50.
    PMID: 17320855
    Angiotensin 1-7, a heptapeptide derived from metabolism of either angiotensin I or angiotensin II, is a biologically active peptide of the renin-angiotensin system. The present study investigated the effect of angiotensin 1-7 on the vasopressor action of angiotensin II in the renal and mesenteric vasculature of Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) and streptozotocin-induced diabetic rats. Angiotensin II-induced dose-dependent vasoconstrictions in the renal vasculature. The pressor response was enhanced in the SHR and reduced in the streptozotocin-diabetic rat compared to WKY rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in the renal vasculature of WKY and SHR rats. However, the ability to reduce angiotensin II response was diminished in diabetic-induced rat kidneys. The effect of angiotensin 1-7 was not inhibited by 1-[(4-(Dimethylamino)-3-methylphenyl] methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate (PD123319), an angiotensin AT(2) receptor antagonist. (D-ALA(7))-Angiotensin I/II (1-7) (D-ALA) (an angiotensin 1-7 receptor antagonist), indomethacin (a cyclo-oxygenase inhibitor), and N(omega)-Nitro-L-Arginine Methyl Ester (L-NAME)(a nitric oxide synthetase inhibitor) abolished the attenuation by angiotensin 1-7 in both WKY rats and SHR, indicating that its action is mediated by angiotensin 1-7 receptor that is either coupled to the release of prostaglandins and/or nitric oxide. The vasopressor responses to angiotensin II in mesenteric vasculature bed was also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses to angiotensin II were relatively smaller in SHR but no significant difference was observed between WKY and streptozotocin-induced diabetic rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in WKY, SHR and diabetic-induced mesenteric bed. The attenuation was observed at the lower concentrations of angiotensin II in WKY and diabetic-induced rats but at higher concentrations in SHR. Similar observation as in the renal vasculature was seen with PD123319, D-ALA, and L-NAME. Indomethacin reversed the attenuation by angiotensin 1-7 only in the SHR mesenteric vascular bed. The present findings support the regulatory role of angiotensin 1-7 in the renal and mesenteric vasculature, which is differentially altered in hypertension and diabetes.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links