Displaying all 2 publications

Abstract:
Sort:
  1. Chang S, Mohammadi Nafchi A, Baghaie H
    Food Sci Nutr, 2021 Jul;9(7):3732-3739.
    PMID: 34262732 DOI: 10.1002/fsn3.2334
    The aim of this research was to evaluate the effect of active polyethylene film (PE) containing linalool and thymol active components on the microbial shelf life of mozzarella cheese. PE films containing different concentrations of linalool or thymol (0%, 1%, 1.5% and 2%) were prepared. The antimicrobial properties of the films were examined, and mozzarella cheese was packed with these active films. The antimicrobial properties of packed samples during 30 days of storage were studied. The obtained results from film tests showed that by increasing the concentration of active agents (linalool and thymol) in PE films, the antimicrobial activities of film samples against Escherichia coli, Staphylococcus aureus, Listeria innocua, and Saccharomyces cervicea were increased. The cheese tests result demonstrated that mozzarella cheese packaging with PE films containing different concentrations of linalool and thymol leads to a decreased growth rate of molds and yeasts in cheeses. At the end of the storage period, the lowest number of molds and yeasts was for a sample packed in PE film containing 2% thymol, which increased from 1.00 to 1.21 Log CFU/g during the storage period. From E. coli and S. aureus contamination, the samples packed in active films were safe until the last day of storage (30th day), while the control sample was unacceptable at 17th day of storage. According to obtained results from this study, it was concluded that the addition of linalool and thymol active components to PE film had a positive effect on the extension of the mozzarella scheese shelf life.
  2. Tamimi N, Mohammadi Nafchi A, Hashemi-Moghaddam H, Baghaie H
    Food Sci Nutr, 2021 Aug;9(8):4497-4508.
    PMID: 34401097 DOI: 10.1002/fsn3.2426
    The purpose of this study was to evaluate the effect of nano-zinc oxide (ZnO-N) morphology on the functional and antimicrobial properties of tapioca starch films. For this reason, nanosphere (ZnO-ns), nanorod (ZnO-nr), and nanoparticle of ZnO (ZnO-np) at 0.5%, 1.0%, and 2.0% were added to the starch film. Then, physicochemical, mechanical, and barrier properties were evaluated. Also, UV-visible and Fourier transform infrared spectroscopy (FTIR) spectra and antibacterial activity of prepared nanocomposite films against Escherichia coli were examined. The results revealed that the ZnO-ns had the most effects on mechanical, physicochemical, and barrier properties. The highest values of the tensile strength (14.15 MPa) and Young's modulus (32.74 MPa) and the lowest values of elongation at break (10.40%) were obtained in the films containing 2% of ZnO nanosphere. In terms of UV transmission, ZnO-nr showed the most significant impact morphology. FTIR spectra indicated that interactions for all morphologies were physical interaction, and there are no chemical reactions between starch structure and nanoparticles. The antibacterial effect of the ZnO-ns was higher than that of other morphologies. In summary, ZnO-ns was the best morphology for using ZnO-N in starch-based nanocomposite films.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links