A multiplex RT-qPCR was developed to examine CYP1A2, CYP2D6, and CYP3A4 induction properties of compounds from food and herbal sources. The induction of drug metabolizing enzymes is an important pharmacokinetic interaction with unique features in comparison with inhibition of metabolizing enzymes. Cytochrome induction can lead to serious drug-drug or drug-food interactions, especially if the coadministered drug plasma level is critical as it can reduce therapeutic effects and cause complications. Using this optimized multiplex RT-qPCR, cytochrome induction properties of andrographolide, curcumin, lycopene, bergamottin, and resveratrol were determined. Andrographolide, curcumin, and lycopene produced no significant induction effects on CYP1A2, CYP2D6, and CYP3A4. However, bergamottin appeared to be a significant in vitro CYP1A2 inducer starting from 5 to 50 μmol/L with induction ranging from 60 to 100-fold changes. On the other hand, resveratrol is a weak in vitro CYP1A2 inducer. Examining the cytochrome induction properties of food and herbal compounds help complement CYP inhibition studies and provide labeling and safety caution for such products.
The bioaccessibility of eicosapentaenoic acid (EPA) in the forms of monoacylglycerol (EPA-MAG), triacylglycerol (EPA-TAG), and phospholipid (EPA-PL) during gastrointestinal passage was compared in this study using a dynamic gastrointestinal model (TIM system). The TIM system simulated the average upper gastrointestinal tract conditions of healthy human adults after intake of a meal (fed state conditions). In this study, the three EPA-rich oils were separately homogenized with full fat milk to obtain oil-in-water emulsions. Plain yogurt was added into the mixture at an emulsion/yogurt ratio of 4:1 (w/w) as the food matrix of the test products. The results show that the test meals containing EPA-PL left the stomach compartment most efficiently in comparison with the gastric emptying of EPA-MAG and EPA-TAG. The PLs also showed a significantly (P < 0.05) higher bioaccessibility of EPA (75-80%) in comparison with MAG (30%) and TAG (38%). The better gastric emptying of EPA-PL was likely related to the more stable emulsion of EPA-PL in the test meal. EPA-PL was delivered within the meal matrix into the duodenum instead of floating on the top of the test meal matrix. EPA-MAG had the highest amount of EPA that did not leave the stomach (68% of the test meal). The results from this work indicate that EPA-PL is a more effective form of EPA for a higher lipid bioaccessibility than MAG and TAG under the test conditions.
Binary blends of palm olein (PO) with sunflower oil (SFO), canola oil (CNO), and cottonseed oil (CSO) were formulated to assess their stability under continuous frying conditions. The results were then compared with those obtained in PO. The oil blends studied were: (1) 60:40 for PO + SFO; (2) 70:30 for PO + CNO; and (3) 50:50 for PO + CSO. The PO and its blends were used to fry potato chips at 180°C for a total of 56 h of operation. The evolution of analytical parameters such as tocols, induction period, color, p-anisidine value, free fatty acid, smoke point, polar compounds, and polymer compounds were evaluated over the frying time. Blending PO with unsaturated oils was generally proved to keep most qualitative parameters comparable to those demonstrated in PO. Indeed, none of the oils surpassed the legislative limits for used frying. Overall, it was noted that oil containing PO and SFO showed higher resistance toward oxidative and hydrolytic behaviors as compared to the other oil blends.
This study focuses on the impact of different wall materials on the physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas. Using the powder characterization technique, purple sweet potato anthocyanin (PSPAs) powders were analysed for moisture content, water activity, dissolution time, hygroscopicity, color and morphology. PSPAs were produced using different wall materials: maltodextrin (MD), gum arabic (GA) and a combination of gum arabic and maltodextrin (GA + MD) at a 1:1 ratio. Each of the wall materials was homogenized to the core material at a core/wall material ratio of 5 and were microencapsulated by microwave-assisted drying at 1100 W. Results indicated that encapsulated powder with the GA and MD combination presented better quality of powder with the lowest value of moisture content and water activity. With respect to morphology, the microcapsule encapsulated with GA + MD showed several dents in coating surrounding its core material, whereas other encapsulated powders showed small or slight dents entrapped onto the bioactive compound. Colorimetric analysis showed changes in values of L, a*, b*, hue and chroma in the reconstituted powder compared to the initial powder.
Different herbal biopolymers were used to encapsulate Enterococcus durans IW3 to enhance its storage stability in yogurt and subsequently its endurance in gastrointestinal condition. Nine formulations of encapsulation were performed using alginate (ALG), ALG-psyllium (PSY), and ALG-gum Arabic (GA) blends. The encapsulation efficiency of all formulations, tolerance of encapsulated E. durans IW3 against low pH/high bile salt concentration, storage lifetime, and release profile of cells in natural condition of yogurt were evaluated. Result revealed 98.6% encapsulation efficiency and 76% survival rate for all formulation compared with the unencapsulated formulation cells (43%). The ALG-PSY and ALG-GA formulations have slightly higher survival rates at low pH and bile salt condition (i.e., 76-93% and 81-95%, respectively) compared with the ALG formulation. All encapsulated E. durans IW3 was released from the prepared beads of ALG after 90 min, whereas both probiotics encapsulated in ALG-GA and ALG-PSY were released after 60 min. Enterococcus durans IW3 was successfully encapsulated in ALG, ALG-GA, and ALG-PSY beads prepared by extrusion method. ALG-GA and ALG-PSY beads are suitable delivery carriers for the oral administration of bioactive compounds like probiotics. The GA and PSY gels exhibited better potential for encapsulation of probiotic bacteria cells because of the amendment of ALG difficulties and utilization of therapeutic and prebiotic potentials of these herbal biopolymers.
Chicken sausages included with three different quantities of banana (Musa balbisiana) peel powder. The technological properties (cooking yield, texture, water-holding capacity, color, rheology, and texture), composition, and sensory acceptability were assessed. In storage study, lipid oxidation of the best formulation from the sensory score was evaluated. The inclusion of banana peel powder (BPP) raises the nutritional value with regard to an increase in dietary fiber and a reduction in the sausage fat content. The addition of BPP also causes a significant increase in the cooking yield and water-holding capacity. Additionally, storage modulus values increase with the increase in the BPP's concentration. However, with BPP incorporation, a hard texture and darkening of the sausage were observed. Interestingly, our findings exhibit the compromise in microstructural of chicken sausage with high percentage of BPP manifested by the high storage modulus and hardness but with low resistance toward stress, short linear viscoelastic region. This aspect also caused a significant change in the sensory score. The TBA value in the sausage containing 2% BPP exhibited a delay in lipid oxidation up to 55%, prompting its antioxidant potential. Generally, the incorporation of BPP to chicken sausage changes its properties. BPP has been a potential candidate as a value-adding ingredient that may be used during meat preparation since it positively influences the nutritional value and specific technological properties of the food.
The purpose of this study was to evaluate the effect of nano-zinc oxide (ZnO-N) morphology on the functional and antimicrobial properties of tapioca starch films. For this reason, nanosphere (ZnO-ns), nanorod (ZnO-nr), and nanoparticle of ZnO (ZnO-np) at 0.5%, 1.0%, and 2.0% were added to the starch film. Then, physicochemical, mechanical, and barrier properties were evaluated. Also, UV-visible and Fourier transform infrared spectroscopy (FTIR) spectra and antibacterial activity of prepared nanocomposite films against Escherichia coli were examined. The results revealed that the ZnO-ns had the most effects on mechanical, physicochemical, and barrier properties. The highest values of the tensile strength (14.15 MPa) and Young's modulus (32.74 MPa) and the lowest values of elongation at break (10.40%) were obtained in the films containing 2% of ZnO nanosphere. In terms of UV transmission, ZnO-nr showed the most significant impact morphology. FTIR spectra indicated that interactions for all morphologies were physical interaction, and there are no chemical reactions between starch structure and nanoparticles. The antibacterial effect of the ZnO-ns was higher than that of other morphologies. In summary, ZnO-ns was the best morphology for using ZnO-N in starch-based nanocomposite films.
Oil palm (Elaeis guineensis Jacq.) fronds (OPF) are the most abundant oil palm solid wastes that are generated during oil palm agriculture and harvest. Palm oil and some other palm wastes have been reported to contain high concentrations of carotenoids with vital bioactive properties. However, the extraction and quantification of carotenoids from OPF have not been reported. In this study, ultrasonic-assisted extraction, HPLC-FLD for quantification, and response surface methodology (RSM) for optimization of β-carotene, lutein, and zeaxanthin from OPF extracts were investigated. The effects of extraction temperature (X1: 30-70°C), extraction time (X2: 10-50 min), and solvent-sample ratio (X3: 10-50 mL/g) on the recovery of β-carotene (Y1), lutein (Y2), and zeaxanthin (Y3) were investigated using three-level Box-Behnken design (BBD) experiment. At a desirability of 1, the optimum extraction conditions for β-carotene (30.14°C, 37.11 min, and 23.18 mL/g), lutein (30.00°C, 39.09 min, and 19.24 mL/g), and zeaxanthin (30.09°C, 36.76 min, and 22.38 mL/g) yielded carotenoid concentrations of 17.95 μg/g dry weight (DW), 261.99 μg/g DW, and 29.99 μg/g DW, respectively.
Coronaviruses, which have been enveloped nonsegmented positive-sense RNA viruses, were first mentioned in the mid-1960s and can attack people as well as a wide range of animals (including mammals and birds). Three zoonotic coronaviruses have been identified as the cause of large-scale epidemics over the last two decades: Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and swine acute diarrhea syndrome (SADS). Epithelial cells in the respiratory and gastrointestinal tract are the principal targeted cells, and viral shedding occurs via these systems in diverse ways such as through fomites, air, or feces. Patients infected with the novel coronavirus (2019-nCoV) reported having visited the Wuhan seafood wholesale market shortly before disease onset. The clinical data on established 2019-nCoV cases reported so far indicate a milder disease course than that described for patients with SARS-CoV or MERS-CoV. This study aimed to review radiation inactivation of these viruses in the food industry in three sections: visible light, ionizing radiation (alpha ray, beta ray, X-ray, gamma ray, neutron, plasma, and ozone), and nonionizing radiation (microwave, ultraviolet, infrared, laser light, and radiofrequency). Due to the obvious possibility of human-to-human and animal-to-human transmission, using at least one of these three methods in food processing and packaging during coronavirus outbreaks will be critical for preventing further outbreaks at the community level.
Quality and food safety are of paramount importance to the palm oil industry. In this work, we investigated the practicability of ethylene gas exogenous application on post-harvested oil palm fruit bunches to improve the crude palm oil (CPO) quality. The bunches were first exposed to ethylene gas for 24 hr to induce abscission of palm fruits from bunches. The detached fruits were then subjected to heat treatment, mechanical extraction, clarification and drying to produce CPO. Critical quality parameters of CPO produced, that is free fatty acid, deterioration of the bleachability index and triacylglycerol showed improvement with ethylene gas treatment. Contaminant content that is phosphorus, chloride, iron, and copper also showed a reduction in the CPO derived from ethylene-treated bunches. These findings corresponded with low levels of contaminants such as 3-monochloropropane-1,2-diol esters and glycidyl esters in refined oil. The implementation strategy and practicability of this method is herein proposed and discussed. Ethylene application not only improves the CPO quality, but could potentially enhance the process sustainability of palm oil mills.
The aim of this study was to investigate the effects of dual modification on the functional, microstructural, and thermal properties of tapioca starch. Tapioca starch was first hydrolyzed by 0.14 M HCl for 0, 6, 12, 18, and 24 hr and then hydroxypropylated by adding 0%, 10%, 20%, and 30% (v/w) propylene oxide. The degree of hydroxypropylation, solubility, water absorption, rheological, thermal, and microstructure characterization of dually modified tapioca starch was determined. Hydroxypropylation did not cause any considerable changes in the starch granular size and shape of tapioca starch. Acid hydrolysis disrupts the starch granules, and the starches with smaller sizes were produced. The degree of molar substitution (DS) of dual modified starches ranged from 0.118 to 0.270. The dual modified starches significantly had higher solubility than native starch (p
The prolongation of life span has attracted more and more attention in the current world. Gut microbiota is considered one of the most critical elements and is essential in regulating life span and quality. The effects of donkey whey protein (DWP) and donkey whey hydrolysate (DWPP) on physiological functions and gut microbiota of D-galactose-induced aging mice were investigated to find new strategies for resisting aging. Our results showed that DWP and DWPP could increase the body weight gain velocity, superoxide dismutase (SOD) activity, and thymus index, whereas decrease the level of reactive oxygen species (ROS) and malondialdehyde (MDA), and improve the aging of the body in the liver congestion, oozy draw focal sclerosis of chronic inflammation. The effects of medium and high concentrations of DWP and low and medium concentrations of DWPP were the same as the vitamin C (Vc)-positive control group. It was found that both DWP and DWPP could change α-diversity; the relative abundance of Lactobacillus increased, whereas the relative abundance of Helicobacter and Stenotrophomonas decreased after being treated with DWP and DWPP. The correlation between intestinal microflora and physiological indexes showed that chao1, ACE, and observed species indexes in the α index were positively correlated with weight gain velocity, SOD activity, and thymus index. The relative abundance of Lactobacillus was positively correlated with SOD and thymus index but negatively correlated with MDA. The relative abundance of Stenotrophomonas was opposite to that of Lactobacillus. The Anaerobiospirillum, Fusobacterium, and Dubosiella had a significant positive correlation with the weight gain velocity. The study provided a deeper more profound understanding of the potential use of DWP and DWPP in senescence delays.
The aquaponics production system integrates hydroponics and recirculatory aquaculture system for the simultaneous production of plants and fish. At a time, such as the postpandemic era, the aquaponics system represents an efficient green farming and eco-friendly alternative to sustainable agricultural production. In this review, the history and development of the production systems were traced vis-a-vis its pros and cons. Although there has been much dispute about the origin of the system, the numerous records of developmental attempts in history have all led to the current complexity of the systems and their efficiency. Water conservation, improved performance, food security, less pollution, and low energy consumption are some of the advantages identified in the use of aquaponics systems for food production. Challenges to the domestication of the system, however, include moderately high start-up capital, the need for stable electricity to operate the system, nutrient availability, as well as treatment of diseases in the system. Although the aquaponics production system could be a panacea for food security in Africa, modalities for the domestication of this technology are largely not in place, hence the need for some government interventions in this regard.
The total, soluble, and insoluble oxalate contents of fresh and wok-fried bitter gourd (Momordica charantia) fruits were extracted and measured using HPLC chromatography. Frozen bitter gourds were imported from Vietnam, and two cultivars characteristic of bitter gourd fruits grown in India and Malaysia were grown locally in the North Island of New Zealand. The mean total oxalate contents of ripe fruits from Vietnam, India, and Malaysia were 85.90 ± 8.60 mg/100 g wet matter (WM), while the mean total oxalates fell to 88.06 ± 0.95 mg/100 g FM when the fruits were wok-fried. The mean soluble oxalate content of the total oxalate was 54.42% of the ripe fruits and 58.14% of the wok-fried fruits. The three cultivars of bitter gourds were processed into juice by the addition of standard ingredients and then processed through a screw press to remove excess fiber. The final juices had an overall mean value of 27.11 mg of total oxalates/100 g WM; the mean soluble oxalate content was 85.5% of the total, which was much higher than that measured in the cooked gourds (mean 70.7%).
Clinacanthus nutans (Burm. f.) Lindau (C. nutans) has been reported to lower blood glucose level; however, evidence on its efficacy in lowering diabetic complications is limited. The antidiabetic properties of C. nutans aqueous leaf extract on serum metabolic indices, sorbitol production, and aldose reductase enzyme activities in the kidneys, lens, and sciatic nerve of type II diabetic (T2D) rats were evaluated. All rats except normal control rats were fed with a high-fat diet for 8 weeks to induce obesity and subsequently injected with 35 mg/kg streptozotocin to induce type II diabetes. Aqueous leaf extract of C. nutans (100 and 200 mg kg-1 day-1) and quercetin (10 mg kg-1 day-1) were fed orally for 4 weeks. Diabetic rats administered with C. nutans at 100, 200 mg kg-1 day-1 and quercetin had significantly (p
Edible insects are currently being promoted as an inexpensive alternative source of protein in underdeveloped countries due to the rising cost of conventional animal protein and the foreseen future deficit in its supply. A supplemental palm weevil larvae and orange-fleshed sweet potato biscuit was developed as part of efforts to understand the nutritional benefits of edible insects and to predict whether these benefits will contribute to better nutrition among pregnant women in Ghana. The palm weevil larvae flour and the orange-fleshed sweet potato flour were mixed with wheat flour in three formulations that had 0, 35, and 70% of palm weevil larvae flour, before being made into biscuits. The biscuits were subjected to proximate and mineral content analysis and sensory evaluation. Proximate and mineral composition of the biscuits increased with increasing levels of palm weevil larvae flour substitution. Among the blends, biscuits containing 70% palm weevil larvae had the highest energy and fat content, and protein content also increased by 45% compared with biscuits made from 100% wheat flour. Calcium, iron, and zinc levels also increased with increasing levels of palm weevil larvae flour substitution. However, carbohydrate and crude fiber concentrations of the biscuits decreased with increasing substitution. The overall acceptability of the biscuits as determined by sensory evaluation using pregnant women was high. Biscuits fortified with palm weevil larvae can be a nutritious snack for pregnant women.
This review article presents a comprehensive review pertaining to antioxidants and various assays that determined enzymatic and nonenzymatic antioxidants. Antioxidants have gained attention at the global scale on its prominent beneficial roles that can fight against many chronic infirmities, including cancer and cardiovascular diseases. Many studies have investigated different types of samples, such as medicinal plants, fruits, and vegetables, by using various antioxidant assays. Antioxidants can be grouped into enzymatic and nonenzymatic antioxidants. To date, most studies had looked into nonenzymatic antioxidants due to lack of references on enzymatic antioxidant assays. Therefore, this review article depicts on seven assays of enzymatic antioxidants (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, ascorbate oxidase, guaiacol peroxidase, and glutathione reductase) and fifteen activities of nonenzymatic antioxidants (total polyphenol, total phenolic acids, total flavonoids, total ascorbic acid, anthocyanin content, DPPH scavenging activity, FRAP assay, hydrogen peroxide scavenging activity, nitric oxide scavenging activity, superoxide radical scavenging activity, hydroxyl radical scavenging activity, phosphomolybdate assay, reducing power, metal ion chelating activity, and β-carotene), which are described in detail to ease further investigations on antioxidants in future.
Nigella sativa, commonly known as the black seed, is a culinary spice therapeutic against many ailments. Common preparation practice of roasting or heating the seeds often deteriorates bioactive compounds, which can be remedied with superheated steam (SHS). With roasting temperatures of 150, 200, and 250°C and roasting times of 10, 15, and 20 min, convection and SHS roasting media were tested, and their effects on proximate analysis, antioxidant assays, and oil quality were evaluated. For proximate content, moisture significantly decreased from 9.08% in unroasted seeds to 4.18%-1.04% in roasted seeds, while fat increased to as high as 44.76% from 32.87% in unroasted seeds. Roasting only slightly increased ash content and had no significant impact on protein and carbohydrate content. SHS roasted black seeds had better DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical scavenging capacity (RSC) than convection roasted seeds. DPPH RSC decreased with elevated roasting time and temperature, conversely related to total phenolic content, which increased with increased roasting time and temperature. Oil of roasted seeds developed an increasingly intense brown color from an initial light, yellow, unroasted oil with better extraction efficiency in SHS roasting. For oil quality analysis, free fatty acid values were significantly lower in both roasted samples. Peroxide value was initially recorded at 84 in convection and 48 (meq O2/kg of oil) in SHS roasted samples. In contrast, p-anisidine values were initially recorded at 28.36 in convection roasted samples compared to 23.73 in SHS roasted samples. Based on all quality analyses, SHS showed better potential in black seed quality preservation.
This study aimed to investigate the physiochemical properties of Sarawak's adapted Liberica coffee silverskin (CS) using multiple solvents (distilled water, methanol, and ethanol) and its impact on the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities of the CS. The results showed that the highest TPC was observed in the methanol extract (15.24 ± 0.65 mg GAE/g), while the highest TFC was recorded when extracted with ethanol (25.14 ± 0.59 mg QE/g). The DPPH activity was also found to be highest in the ethanol extract (83.85 ± 1.78%), concurred by the results in the FRAP assay as the highest reduction was also in ethanol (11.40 ± 18.57 μmol FSE/g). These findings demonstrate that the bioactive compounds of CS extracted can be greatly influenced by the choice of solvent while highlighting the potential for Sarawak's adapted Liberica CS to be further harnessed into a value-added product and enabling a better by-product waste management.
In this study, the physicochemical, mechanical, and antimicrobial activities of polyethylene (PE) films coated with peppermint (Menthol) and Origanum vulgare (Carvacrol) essential oil were evaluated. For this reason, PE films were coated with MC-HPMC solution containing different concentrations of menthol and carvacrol (0, 1, 1.5, and 2%), and mechanical, electromagnetic, barrier, and antimicrobial properties of all prepared films were examined. The obtained results demonstrated that by increasing the concentration of menthol and carvacrol in film coatings, tensile strength (from 36 to 23 MPa), water vapor permeability (from 12 to 11 g.m-1s-1Pa-1), and L* and b* indexes were decreased, while the oxygen permeability (OP) and elongation at break significantly were increased (p