Undoped ZnO, Gd-doped ZnO with various doping concentration (1, 3, 5, and 7 at%), and 3 at% (Gd, Al) co-doped ZnO films were prepared on a glass substrate using the co-reactive sputtering method. The influence of the doping and co-doping process on the films was characterized using X-ray diffraction, FESEM, EDX, MFM, VSM, UV-VIS spectroscopy, and the Hall Effect measurement at room temperature. XRD study confirmed that the Gd and Al ions are incorporated into a ZnO lattice. EDX analysis confirmed the existence of Zn, O, Al, and Gd elements in the prepared Gd-doped ZnO and (Gd, Al) co-doped ZnO films, which suggests the successful doping procedure. All the deposited films obtained maximum optical transmittance above 80%, showing a high transparency of the films in the visible region. The optical band gap was found red-shifted from 3.11 to 3.21 eV with the increase in Gd doping concentration. The increase in band gap energy from 3.14 eV to 3.16 eV was obtained for 3 at% Gd and 3 at% (Gd, Al) co-doped ZnO films. The MFM measurement proved the existence of room-temperature ferromagnetism and spin polarization in Gd and (Gd, Al) co-doped ZnO films. By co-doping with Al, the result obtained from MFM shows the enhancement of magnetic properties, as it exhibited a smaller domain size with a shorter magnetic correlation length L, a larger phase shift Φrms, and the highest value of δfrms compared to the sample with 3 at% Gd incorporated into ZnO. The carrier concentration and electrical conductivity increased with the increase in Gd concentration, whereas the electrical resistivity and hall mobility showed a reverse trend. The similar trend of results obtained for 3 at% (Gd, Al) co-doped ZnO as compared to 3 at% Gd-doped ZnO also indicates greater electrical properties after a shallow donor such as aluminum was incorporated into Gd-doped ZnO thin films. In conclusion, for future applications, one should consider the possible influence of other types of shallow donor incorporation in an attempt to enhance the properties of new types of diluted magnetic semiconductors (DMSs).