Displaying all 2 publications

Abstract:
Sort:
  1. Murugan DD, Balan D, Wong PF
    Phytother Res, 2021 Nov;35(11):5936-5960.
    PMID: 34219306 DOI: 10.1002/ptr.7205
    Obesity is one of the most serious public health problems in both developed and developing countries in recent years. While lifestyle and diet modifications are the most important management strategies of obesity, these may be insufficient to ensure long-term weight reduction in certain individuals and alternative strategies including pharmacotherapy need to be considered. However, drugs option remains limited due to low efficacy and adverse effects associated with their use. Hence, identification of safe and effective alternative therapeutic agents remains warranted to combat obesity. In recent years, bioactive phytochemicals are considered as valuable sources for the discovery of new pharmacological agents for the treatment of obesity. Adipocyte hypertrophy and hyperplasia increases with obesity and undergo molecular and cellular alterations that can affect systemic metabolism giving rise to metabolic syndrome and comorbidities such as type 2 diabetes and cardiovascular diseases. Many phytochemicals have been reported to target adipocytes by inhibiting adipogenesis, inducing lipolysis, suppressing the differentiation of preadipocytes to mature adipocytes, reducing energy intake, and boosting energy expenditure mainly in vitro and in animal studies. Nevertheless, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals. This review outlines common pathways involved in adipogenesis and phytochemicals targeting effector molecules of these pathways, the challenges faced and the way forward for the development of phytochemicals as antiobesity agents.
  2. Balan D, Chan KL, Murugan D, AbuBakar S, Wong PF
    Phytother Res, 2018 Jul;32(7):1332-1345.
    PMID: 29520860 DOI: 10.1002/ptr.6065
    Bioactive compounds of Eurycoma longifolia (EL) jack were previously shown to reduce omentum fat mass and oestradiol-induced fatty uterine adhesion in rats. However, the exact role of EL on adipogenesis remains unknown. This study sought to investigate the effects of an EL standardized quassinoids-enriched fraction (SQEL) and the pure compound, eurycomanone, on adipogenesis in 3T3-L1 preadipocyte cells. 3T3-L1 cells were induced to differentiate and treated for 8 days. The treatment reduced intracellular accumulation of lipid droplets and triglycerides in the differentiating adipocytes and induced lipolysis in matured adipocytes. The expressions of adipogenic transcription factors and markers were also significantly downregulated during the early stage of differentiation. Furthermore, SQEL also suppressed body weight gain, decreased epididymal and perirenal fat pad mass and size, and reduced the accumulation of fat in the livers of C57BL/6J mice fed with normal or high-fat diet that were concurrently given 5 mg/kg and 10 mg/kg (i.p) of SQEL for 12 weeks. SQEL also improved glucose intolerance and decreased the elevated total cholesterol and triglyceride levels in these mice groups. These findings suggest that SQEL could be explored as an alternative pharmacologic agent inhibiting adipogenesis for the prevention of obesity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links