The primary target of severe acute respiratory syndrome coronavirus 2 is the respiratory system including the nose and lungs, however, it can also damage the kidneys, cardiovascular system and gastrointestinal system. Many recent reports suggested that severe acute respiratory syndrome coronavirus 2 infections can also affect the central nervous system as well as peripheral nervous system that lead to the several neurological complications. The virus can break the blood brain barrier and enters the brain via haematological route or directly by the angiotensin-converting enzyme 2 receptors present on endothelial cells of many cerebral tissues. The neurological complications are manifested by headache, dizziness, encephalopathy, encephalitis, cerebrovascular disease, anosmia, hypogeusia, muscle damage, etc. This review article described the possible routes and mechanism of nervous system infection and the range of neurological complications of COVID-19 that may help the medical practitioners and researchers to improve the clinical treatment and reduce the mortality rate among patients with viral diseases.
Gout is a prevalent metabolic disorder characterized by increased uric acid (UA) synthesis or decreased UA clearance from the bloodstream, leading to the formation of urate crystals in joints and surrounding tissues. Hyperuricemia (HUA), the underlying cause of gout, poses a growing challenge for healthcare systems in developed and developing countries. Currently, the most common therapeutic approaches for gouty HUA primarily involve the use of allopathic or modern medicine. However, these treatments are often accompanied by adverse effects and may not be universally effective for all patients. Therefore, this systematic review aims to provide a comprehensive outline of phytochemical compounds that have emerged as alternative treatments for HUA associated with gout and to examine their specific mechanisms of action. A systematic search was conducted to identify phytochemicals that have previously been evaluated for their effectiveness in reducing HUA. From a review of > 800 published articles, 100 studies reporting on 50 phytochemicals associated with the management of HUA and gout were selected for analysis. Experimental models were used to investigate the effects of these phytochemicals, many of which exhibited multiple mechanisms beneficial for managing HUA. This review offers valuable insights for identifying and developing novel compounds that are safer and more effective for treating HUA associated with gout.