Displaying all 2 publications

Abstract:
Sort:
  1. Safaei M, Sundararajan EA, Driss M, Boulila W, Shapi'i A
    Comput Biol Med, 2021 09;136:104754.
    PMID: 34426171 DOI: 10.1016/j.compbiomed.2021.104754
    Obesity is considered a principal public health concern and ranked as the fifth foremost reason for death globally. Overweight and obesity are one of the main lifestyle illnesses that leads to further health concerns and contributes to numerous chronic diseases, including cancers, diabetes, metabolic syndrome, and cardiovascular diseases. The World Health Organization also predicted that 30% of death in the world will be initiated with lifestyle diseases in 2030 and can be stopped through the suitable identification and addressing of associated risk factors and behavioral involvement policies. Thus, detecting and diagnosing obesity as early as possible is crucial. Therefore, the machine learning approach is a promising solution to early predictions of obesity and the risk of overweight because it can offer quick, immediate, and accurate identification of risk factors and condition likelihoods. The present study conducted a systematic literature review to examine obesity research and machine learning techniques for the prevention and treatment of obesity from 2010 to 2020. Accordingly, 93 papers are identified from the review articles as primary studies from an initial pool of over 700 papers addressing obesity. Consequently, this study initially recognized the significant potential factors that influence and cause adult obesity. Next, the main diseases and health consequences of obesity and overweight are investigated. Ultimately, this study recognized the machine learning methods that can be used for the prediction of obesity. Finally, this study seeks to support decision-makers looking to understand the impact of obesity on health in the general population and identify outcomes that can be used to guide health authorities and public health to further mitigate threats and effectively guide obese people globally.
  2. Ghaleb FA, Al-Rimy BAS, Boulila W, Saeed F, Kamat M, Foad Rohani M, et al.
    Comput Intell Neurosci, 2021;2021:2977954.
    PMID: 34413885 DOI: 10.1155/2021/2977954
    Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV). Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth distribution, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms equally distribute the interference reduction on the links to achieve fairness which neither guarantees a fair distribution of the network bandwidth nor eliminates node starvation. In addition, the metaheuristic-based solutions such as genetic algorithm, which is commonly used for WMN, use randomness in creating initial population and selecting the new generation usually leading the search to local minima. To this end, this study proposes a Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) to solve node starvation problem in wireless mesh networks. FA-SCGA-CAA maximizes link fairness while minimizing link interference using a genetic algorithm (GA) with a novel nonlinear fairness-oriented fitness function. The primary chromosome with powerful genes is created based on multicriterion links ranking channel assignment algorithm. Such a chromosome was used with a proposed semichaotic technique to create a strong population that directs the search towards the global minima effectively and efficiently. The proposed semichaotic technique was also used during the mutation and parent selection of the new genes. Extensive experiments were conducted to evaluate the proposed algorithm. A comparison with related work shows that the proposed FA-SCGA-CAA reduced the potential node starvation by 22% and improved network capacity utilization by 23%. It can be concluded that the proposed FA-SCGA-CAA is reliable to maintain high node-level fairness while maximizing the utilization of the network resources, which is the ultimate goal of many wireless networks.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links